PARTICLE FILTER GREYWOLF OPTIMIZATION FOR PARAMETER ESTIMATION OF NONLINEAR DYNAMIC SYSTEM

被引:0
|
作者
Zhang, Cuilian [1 ]
Yang, Xu [1 ]
Li Lingbo [1 ]
Wong, Derek F. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
关键词
Particle Filter; MCMC; Grey Wolf Optimization; Parameter Estimation; UNCERTAINTY; MCMC;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle filter samplers, Markov chain Monte Carlo (MCMC)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF-GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF-GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [41] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    [J]. Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [42] Parameter estimation for time-delay chaotic system by particle swarm optimization
    Tang, Yinggan
    Guan, Xinping
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1391 - 1398
  • [43] Parameter estimation for chaotic system with initial random noises by particle swarm optimization
    Gao, Fei
    Lee, Ju-Jang
    Li, Zhuoqiu
    Tong, Hengqing
    Lue, Xiaohong
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1286 - 1291
  • [44] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [45] SYSTEM IDENTIFICATION WITH PARTICLE SWARM OPTIMIZATION METHOD FOR NONLINEAR DYNAMIC SYSTEMS
    Fernandez, Manuel A.
    Chang, Jen-Yuan
    [J]. PROCEEDINGS OF THE ASME 2020 29TH CONFERENCE ON INFORMATION STORAGE AND PROCESSING SYSTEMS (ISPS2020), 2020,
  • [46] Parameter estimation in nonlinear systems with dynamic noise
    Stollenwerk, N
    [J]. INTEGRATIVE SYSTEMS APPROACHES TO NATURAL AND SOCIAL DYNAMICS, 2001, : 95 - 101
  • [47] Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization
    Tashkova, Katerina
    Silc, Jurij
    Atanasova, Natasa
    Dzeroski, Saso
    [J]. ECOLOGICAL MODELLING, 2012, 226 : 36 - 61
  • [48] DYNAMIC PARAMETER OPTIMIZATION OF ROTOR-BEARING SYSTEM USING PARTICLE SWARM OPTIMIZATION METHOD
    Yang Xuan
    Wu Lei
    Su Shenjian
    Duan Changcheng
    Wang Xia
    [J]. PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [49] Particle filter-based robust state and parameter estimation for nonlinear process systems with variable parameters
    Zhu, Zhiliang
    Meng, Zhiqiang
    Cao, Tingting
    Zhang, Zhengjiang
    Dai, Yuxing
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (06)
  • [50] Scalable nonlinear programming framework for parameter estimation in dynamic biological system models
    Shin, Sungho
    Venturelli, Ophelia S.
    Zavala, Victor M.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)