Optimization-based particle filter for state and parameter estimation

被引:0
|
作者
Li Fu
机构
基金
国家高技术研究发展计划(863计划);
关键词
importance density; particle filter; extend Kalman filter;
D O I
暂无
中图分类号
TN713 [滤波技术、滤波器];
学科分类号
080902 ;
摘要
In recent years,the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems.Choosing good importance density is a critical issue in particle filter design.In order to improve the approximation of posterior distribution,this paper provides an optimization-based algorithm(the steepest descent method)to generate the proposal distribution and then sample particles from the distribution.This algorithm is applied in 1-D case,and the simulation results show that the proposed particle filter performs better than the extended Kalman filter(EKF),the standard particle filter(PF),the extended Kalman particle filter(PF-EKF)and the unscented particle filter(UPF)both in efficiency and in estimation precision.
引用
收藏
页码:479 / 484
页数:6
相关论文
共 50 条
  • [1] Optimization-based particle filter for state and parameter estimation
    Li Fu
    Qi Fei
    Shi Guangming
    Zhang Li
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2009, 20 (03) : 479 - 484
  • [2] Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
    Ramazan Havangi
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 3558 - 3575
  • [3] Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
    Havangi, Ramazan
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3558 - 3575
  • [4] Optimization-Based Parameter Tuning of Unscented Kalman Filter for Speed Sensorless State Estimation of Induction Machines
    Horvath, Krisztian
    Kuslits, Marton
    [J]. 2017 5TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND ELECTRONICS ENGINEERING (ISEEE), 2017,
  • [5] A particle swarm optimization-based state estimation scheme for moving objects
    Lee, T. -E.
    Su, J. -P.
    Yu, K. -W.
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2012, 34 (2-3) : 236 - 254
  • [6] An Intelligent Optimization-Based Particle Filter for Fault Diagnosis
    Cao, Zheng
    Du, Xianjun
    [J]. IEEE ACCESS, 2021, 9 : 87839 - 87848
  • [7] An Optimization-Based Parallel Particle Filter for Multitarget Tracking
    Sutharsan, S.
    Kirubarajan, T.
    Lang, Tom
    McDonald, Mike
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (02) : 1601 - 1618
  • [8] Simplex Optimization for Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Ulker, Muhammed Akif
    Uzunoglu, Bahri
    [J]. 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 399 - 404
  • [9] Particle Filter for State and Parameter Estimation in Passive Ranging
    Wang Wan-ping
    Liao Sheng
    Xing Ting-wen
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 257 - 261
  • [10] Optimization-based framework for modeling and kinetic parameter estimation
    Sanchez-Ramirez, Eduardo
    Huerta-Rosas, Brenda
    Jose Quiroz-Ramirez, Juan
    Alejandro Suarez-Toriello, Victor
    Contreras-Zarazua, Gabriel
    Gabriel Segovia-Hernandez, Juan
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 186 : 647 - 660