BURNING RATES AND SURFACE CHARACTERISTICS OF HYDROGEN-ENRICHED TURBULENT LEAN PREMIXED METHANE-AIR FLAMES

被引:0
|
作者
Guo, Hongsheng [1 ]
机构
[1] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada
关键词
LAMINAR; VELOCITIES; PRESSURE;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane-air flames were experimentally studied by laser tomography visualization method using a V-shaped flame configuration. Turbulent burning velocities were measured and the variation of flame surface characteristics due to hydrogen addition was analyzed. The results show that hydrogen addition causes an increase in turbulent burning velocity for lean CH4-air mixtures when the turbulent level in the unburned mixture is not changed. The increase rate of turbulent burning velocity is higher than that of the corresponding laminar burning velocity, suggesting that the increase in turbulent velocity due to hydrogen addition is caused by not only chemical kinetics effect, but also the variation in flame structure due to turbulence. The further analysis of flame surface characteristics and brush thickness indicate that hydrogen addition slightly decreases local flame surface density, but increases total flame surface area because of the increased flame brush thickness. As a result, turbulent burning velocity is intensified by the increase in total flame surface area and the increased laminar burning velocity, when hydrogen is added.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [21] Effects of buoyancy on open turbulent lean premixed methane-air V-flames
    Yue Wang
    Jens König
    Christian Eigenbrod
    [J]. Microgravity - Science and Technology, 2003, 14 : 25 - 37
  • [22] Pilot impact on turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor
    Pignatelli, F.
    Kim, H.
    Subash, A. A.
    Liu, X.
    Szasz, R. Z.
    Bai, X. S.
    Brackmann, C.
    Alden, M.
    Lorstad, D.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (60) : 25404 - 25417
  • [23] Investigation of differential diffusion in lean, premixed, hydrogen-enriched swirl flames
    Francolini, Benjamin
    Fan, Luming
    Abbasi-Atibeh, Ehsan
    Bourque, Gilles
    Vena, Patrizio
    Bergthorson, Jeffrey
    [J]. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2024, 18
  • [24] Flame front analysis of high-pressure turbulent lean premixed methane-air flames
    Lachaux, T
    Halter, F
    Chauveau, C
    Gökalp, I
    Shepherd, IG
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 819 - 826
  • [25] Influence of coal dust on premixed turbulent methane-air flames
    Rockwell, Scott R.
    Rangwala, Ali S.
    [J]. COMBUSTION AND FLAME, 2013, 160 (03) : 635 - 640
  • [26] Effects of turbulence and strain rate on hydrogen-enriched high Karlovitz number lean premixed methane flames
    Cicoria, David
    Chan, C. K.
    [J]. FUEL, 2018, 211 : 754 - 766
  • [27] Kinetic Effects of Hydrogen Addition on the Thermal Characteristics of Methane-Air Premixed Flames
    Li, Qingfang
    Hu, Ge
    Liao, Shiyong
    Cheng, Qian
    Zhang, Chi
    Yuan, Chun
    [J]. ENERGY & FUELS, 2014, 28 (06) : 4118 - 4129
  • [28] Ignition and propagation characteristics of hydrogen-enriched methane flames
    Briones, Alejandro M.
    Aggarwal, Suresh K.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO, VOL 2, 2007, : 847 - 856
  • [29] Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames
    Di Sarli, V.
    Di Benedetto, A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) : 7510 - 7518
  • [30] Numerical study of hydrogen-enriched methane-air combustion under ultra-lean conditions
    Mokheimer, Esmail M. A.
    Sanusi, Yinka S.
    Habib, Mohamed A.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (06) : 743 - 762