Ignition and propagation characteristics of hydrogen-enriched methane flames

被引:0
|
作者
Briones, Alejandro M. [1 ]
Aggarwal, Suresh K. [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The effects of H-2 enrichment on the ignition and propagation of laminar CH4-air flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Because fuel-air mixtures can potentially be ignited due to the presence of either a high-temperature zone or a radical pool, we explore temperature-induced ignition and radical -poo l-i nduced ignition. It is observed overall that radical-pool-induced ignition is more effective than temperature- induced ignition for igniting any H-2-CH4-air mixture. With increasing the radical-pool concentration ignition is facilitated and the total ignition time for the mixture to reach the ignition conditions is significantly reduced. In addition, as H2 mole fraction in the fuel jet increases, the mixture is more easily ignited. To study the propagation characteristics of these flames only radical-induced ignition is used since it is more effective. Following ignition, a well-defined triple flame, containing a rich premixed, a nonpremixed, and a lean premixed reaction zone, is formed that propagates upstream with nearly constant flame displacement speed towards the burrier. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixed flame. Predictions are validated using measurements of the flame displacement speed. Detailed simulations are used to examine the effects of H-2 enrichment on the propagation characteristics of CH4-air triple flames. As H-2 concentration in the fuel blend is increased, the flame displacement and propagation speeds increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H-2 addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H-2 concentration. The flame structure and flame dynamics are also markedly modified by H-2 enrichment, which substantially increases the flame curvature and mixture fraction gradient. For all the H-2-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The effect of H-2 addition is to modify the flame sensitivity to stretch, as it decreases the Markstein number (Ma) and increases the flame tendency towards diffusive-thermal instability (i.e. Ma -> 0). These results are consistent with the previously reported experimental results for outwardly propagating spherical flames burning a mixture of natural gas and hydrogen.
引用
收藏
页码:847 / 856
页数:10
相关论文
共 50 条
  • [1] Ignition of hydrogen-enriched methane by heated air
    Fotache, CG
    Kreutz, TG
    Law, CK
    [J]. COMBUSTION AND FLAME, 1997, 110 (04) : 429 - 440
  • [2] THE EFFECT OF IGNITION PROCEDURE ON FLASHBACK OF HYDROGEN-ENRICHED FLAMES
    Yahou, Tarik
    Schuller, Thierry
    Dawson, James R.
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3A, 2023,
  • [3] The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames
    Yahou, Tarik
    Schuller, Thierry
    Dawson, James R.
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [4] Flame characteristics of hydrogen-enriched methane-air premixed swirling flames
    Kim, Han S.
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1063 - 1073
  • [5] Dynamics, NOx and flashback characteristics of confined premixed hydrogen-enriched methane flames
    Tuncer, O.
    Acharya, S.
    Uhm, J. H.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) : 496 - 506
  • [6] Numerical predictions of hydrogen-enriched premixed methane/air flames
    Jiang, Yong
    Qiu, Rong
    Song, Chong-Lin
    [J]. Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2009, 15 (03): : 196 - 202
  • [7] Effects of non-equidiffusion on unsteady propagation of hydrogen-enriched methane/air premixed flames
    Di Sarli, V.
    Di Benedetto, A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) : 7510 - 7518
  • [8] Analysis of spontaneous ignition of hydrogen-enriched methane in a rectangular tube
    Zhou, Shangyong
    Xiao, Jianjun
    Luo, Zhenmin
    Kuznetsov, Mike
    Chen, Zheng
    Jordan, Thomas
    Banuti, Daniel T.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [9] Ignition characteristics of hydrogen-enriched ammonia/air mixtures
    Essmann, Stefan
    Dymke, Jessica
    Hoeltkemeier-Horstmann, Jacqueline
    Moeckel, Dieter
    Schierding, Carola
    Hilbert, Michael
    Yu, Chunkan
    Maas, Ulrich
    Markus, Detlev
    [J]. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2024, 17
  • [10] The role of turbulent fluctuations on radiative emission in hydrogen and hydrogen-enriched methane flames
    Coelho, Pedro J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (17) : 12741 - 12750