Ignition of hydrogen-enriched methane by heated air

被引:98
|
作者
Fotache, CG
Kreutz, TG
Law, CK
机构
[1] Dept. of Mech. and Aerosp. Eng., Princeton University, Princeton
关键词
D O I
10.1016/S0010-2180(97)00084-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study investigates experimentally and computationally the effects of hydrogen addition on ignition in nonpremixed, counterflowing methane vs. heated air jets for ambient pressures between 0.2 and 8.0 atm, hydrogen concentrations in the range 0-60% by volume, and pressure-weighted strain rates of 150, 300, and 350 s(-1). The effect of flow strain rate was further investigated computationally for strain rates between 100 and 10,000 s(-1). Hydrogen addition was found to significantly improve methane ignition through a mechanism of increased radical production and weakening of kinetic inhibition by diffusive separation of branching and termination reactions. Three ignition regimes were identified, depending on the H-2 concentration: 1) hydrogen-assisted methane ignition, 2) transition, and 3) hydrogen-dominated ignition. Both experiments and modeling indicated two-stage ignition within the first two regimes, with the first stage controlled by radical runaway, and the second stage involving thermal feedback. The controlling chemistry within the three ignition regimes was investigated using the Computational Singular Perturbation (CSP) method applied to conditions within an ignition kernel identified similar to previous studies on counterflow ignition. Chemical heat release was shown to be indispensable at ignition in the first two regimes, but negligible within the third, kinetically dominated regime, except at high pressures. Similarly, transport effects were found to be significant in regimes 1) and 2), but the ignition temperatures were largely insensitive to strain within the third regime. Methane addition to the H-2/N-2/air system was found to inhibit ignition at low and moderate pressures, while facilitating it at pressures greater than similar to 5 atm, primarily because of the interaction with the HO2/H2O, chemistry which is dominant in these regimes. A CSP-derived skeletal mechanism was found to represent, within a 3% deviation, the ignition temperatures and species concentrations calculated using the full mechanism. (C) 1997 by The Combustion Institute.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [1] Ignition and propagation characteristics of hydrogen-enriched methane flames
    Briones, Alejandro M.
    Aggarwal, Suresh K.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO, VOL 2, 2007, : 847 - 856
  • [2] Ignition characteristics of hydrogen-enriched ammonia/air mixtures
    Essmann, Stefan
    Dymke, Jessica
    Hoeltkemeier-Horstmann, Jacqueline
    Moeckel, Dieter
    Schierding, Carola
    Hilbert, Michael
    Yu, Chunkan
    Maas, Ulrich
    Markus, Detlev
    [J]. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2024, 17
  • [3] Analysis of spontaneous ignition of hydrogen-enriched methane in a rectangular tube
    Zhou, Shangyong
    Xiao, Jianjun
    Luo, Zhenmin
    Kuznetsov, Mike
    Chen, Zheng
    Jordan, Thomas
    Banuti, Daniel T.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [4] Numerical Study of Ignition and Combustion of Hydrogen-Enriched Methane in a Sequential Combustor
    Impagnatiello, Matteo
    Male, Quentin
    Noiray, Nicolas
    [J]. FLOW TURBULENCE AND COMBUSTION, 2024, 112 (04) : 1249 - 1273
  • [5] Numerical Study of Ignition and Combustion of Hydrogen-Enriched Methane in a Sequential Combustor
    Matteo Impagnatiello
    Quentin Malé
    Nicolas Noiray
    [J]. Flow, Turbulence and Combustion, 2024, 112 : 1249 - 1273
  • [6] REACTION-KINETICS OF HYDROGEN-ENRICHED METHANE AIR AND PROPANE AIR FLAMES
    REFAEL, S
    SHER, E
    [J]. COMBUSTION AND FLAME, 1989, 78 (3-4) : 326 - 338
  • [7] The Effect of Initial Pressure on Explosions of Hydrogen-enriched Methane/air Mixtures
    Cammarota, F.
    Di Benedetto, A.
    Di Sarli, V
    Salzano, E.
    Russo, G.
    [J]. CISAP4: 4TH INTERNATIONAL CONFERENCE ON SAFETY & ENVIRONMENT IN PROCESS INDUSTRY, 2010, 19 : 273 - 278
  • [8] Flame characteristics of hydrogen-enriched methane-air premixed swirling flames
    Kim, Han S.
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1063 - 1073
  • [9] The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures
    Hao, Qiangqiang
    Luo, Zhenmin
    Wang, Tao
    Xie, Chao
    Zhang, Siqi
    Bi, Mingshu
    Deng, Jun
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2021, 126
  • [10] THE EFFECT OF IGNITION PROCEDURE ON FLASHBACK OF HYDROGEN-ENRICHED FLAMES
    Yahou, Tarik
    Schuller, Thierry
    Dawson, James R.
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3A, 2023,