Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials

被引:84
|
作者
Dong, Shengde [1 ,2 ,3 ]
Zhou, Yuan [1 ,2 ]
Hai, Chunxi [1 ,2 ]
Zeng, Jinbo [1 ,2 ]
Sun, Yanxia [1 ,2 ]
Shen, Yue [1 ,2 ]
Li, Xiang [1 ,2 ]
Ren, Xiufeng [1 ,2 ]
Sun, Chao [1 ,2 ,3 ]
Zhang, Guotai [1 ,2 ,3 ]
Wu, Zhaowei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, 18th Xinning Rd, Xining 810008, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium-rich manganese-based cathode materials; Li-ion battery; Nb doping; Electrochemical performance; Density functional theory; CYCLING STABILITY; LI1.2MN0.54NI0.13CO0.13O2; CATHODE; RATE CAPABILITY; SURFACE MODIFICATION; RECENT PROGRESS; OXIDE CATHODES; VOLTAGE DECAY; LI; ELECTRODES; NI;
D O I
10.1016/j.jpowsour.2020.228185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study synthesizes pristine and Nb-doped lithium-rich manganese-based cathode materials by solvothermal and high-temperature solid-phase methods. Analysis by focused ion beam scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy indicates successful Nb doping into the material's bulk structure. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by Nb doping. The discharge capacity of Nb-0.02 can maintain 271.7 mAh.g(-1), and its cycle retention rate is up to 98.50% after 300 cycles at 0.2C; however, under the same parameters, the pristine material's discharge capacity and cycle retention rate are 212.8 mAh.g(-1) and 86.68%. The initial coulombic efficiency and initial discharge capacity of Nb-0.02 is 86.94% and 287.5 mAh.g(-1), while that of the pristine material is 73.59% and 234.2 mAh.g(-1). Density functional theory calculations demonstrate that Nb doping accelerates Li-ion diffusion and stabilizes material structure due to stronger Nb-O bonds from reduced Li-ion migration barrier energy. Thus, the proposed modification strategy for Nb doping can illuminate the structural design of lithium-rich manganese-based cathode materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The roles of nickel/manganese in electrochemical cycling of lithium-rich Mn-based nickel cathode materials
    Zhuo Zheng
    Shi-Xuan Liao
    Bin-Bin Xu
    Ben-He Zhong
    Ionics, 2015, 21 : 3295 - 3300
  • [42] The roles of nickel/manganese in electrochemical cycling of lithium-rich Mn-based nickel cathode materials
    Zheng, Zhuo
    Liao, Shi-Xuan
    Xu, Bin-Bin
    Zhong, Ben-He
    IONICS, 2015, 21 (12) : 3295 - 3300
  • [43] Recent advances in high-performance lithium-rich manganese-based materials for solid-state lithium batteries
    Gao, Keke
    Sun, Chunwen
    Wang, Zelin
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (19) : 3082 - 3105
  • [44] Enhanced Structural Stability and Improved Electrochemical Performance of Layered Lithium-Rich Cathode Materials via Tellurium Doping
    Meng, Junxia
    Wang, Zicheng
    Xu, Lishuang
    Xu, Huaizhe
    Zhang, Shichao
    Yan, Qiqi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2594 - A2602
  • [45] Elucidating the Effect of Iron Doping on the Electrochemical Performance of Cobalt-Free Lithium-Rich Layered Cathode Materials
    Wu, Fanglin
    Kim, Guk-Tae
    Kuenzel, Matthias
    Zhang, Huang
    Asenbauer, Jakob
    Geiger, Dorin
    Kaiser, Ute
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2019, 9 (43)
  • [46] Electrochemical In Situ Na Doping to Construct High-Performance Lithium-Rich Cathode
    Zheng, Chaoliang
    Feng, Jiameng
    Zhang, Da
    Zhang, Di
    Li, Jianling
    ACS ENERGY LETTERS, 2024, 9 (04) : 1339 - 1345
  • [47] Enhancing Cell Performance of Lithium-Rich Manganese-Based Materials via Tailoring Crystalline States of a Coating Layer
    He, Zhenjiang
    Li, Jingyi
    Luo, Ziyan
    Zhou, Zhiwei
    Jiang, Xiangkang
    Zheng, Junchao
    Li, Yunjiao
    Mao, Jing
    Dai, Kehua
    Yan, Cheng
    Sun, Zhaoming
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 49390 - 49401
  • [48] Rate Performance Modification of a Lithium-Rich Manganese-Based Material through Surface Self-Doping and Coating Strategies
    Li, Wanyun
    Zhao, Bangchuan
    Bai, Jin
    Ma, Hongyang
    Li, Kunzhen
    Wang, Peiyao
    Mao, Yunjie
    Zhu, Xuebin
    Sun, Yuping
    LANGMUIR, 2021, 37 (10) : 3223 - 3230
  • [49] Enhancing Cell Performance of Lithium-Rich Manganese-Based Materials via Tailoring Crystalline States of a Coating Layer
    He, Zhenjiang
    Li, Jingyi
    Luo, Ziyan
    Zhou, Zhiwei
    Jiang, Xiangkang
    Zheng, Junchao
    Li, Yunjiao
    Mao, Jing
    Dai, Kehua
    Yan, Cheng
    Sun, Zhaoming
    ACS Applied Materials and Interfaces, 2021, 13 (41): : 49390 - 49401
  • [50] A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries
    Ji, Xueqian
    Xia, Qing
    Xu, Yuxing
    Feng, Hailan
    Wang, Pengfei
    Tan, Qiangqiang
    JOURNAL OF POWER SOURCES, 2021, 487