Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials

被引:84
|
作者
Dong, Shengde [1 ,2 ,3 ]
Zhou, Yuan [1 ,2 ]
Hai, Chunxi [1 ,2 ]
Zeng, Jinbo [1 ,2 ]
Sun, Yanxia [1 ,2 ]
Shen, Yue [1 ,2 ]
Li, Xiang [1 ,2 ]
Ren, Xiufeng [1 ,2 ]
Sun, Chao [1 ,2 ,3 ]
Zhang, Guotai [1 ,2 ,3 ]
Wu, Zhaowei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, 18th Xinning Rd, Xining 810008, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium-rich manganese-based cathode materials; Li-ion battery; Nb doping; Electrochemical performance; Density functional theory; CYCLING STABILITY; LI1.2MN0.54NI0.13CO0.13O2; CATHODE; RATE CAPABILITY; SURFACE MODIFICATION; RECENT PROGRESS; OXIDE CATHODES; VOLTAGE DECAY; LI; ELECTRODES; NI;
D O I
10.1016/j.jpowsour.2020.228185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study synthesizes pristine and Nb-doped lithium-rich manganese-based cathode materials by solvothermal and high-temperature solid-phase methods. Analysis by focused ion beam scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy indicates successful Nb doping into the material's bulk structure. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by Nb doping. The discharge capacity of Nb-0.02 can maintain 271.7 mAh.g(-1), and its cycle retention rate is up to 98.50% after 300 cycles at 0.2C; however, under the same parameters, the pristine material's discharge capacity and cycle retention rate are 212.8 mAh.g(-1) and 86.68%. The initial coulombic efficiency and initial discharge capacity of Nb-0.02 is 86.94% and 287.5 mAh.g(-1), while that of the pristine material is 73.59% and 234.2 mAh.g(-1). Density functional theory calculations demonstrate that Nb doping accelerates Li-ion diffusion and stabilizes material structure due to stronger Nb-O bonds from reduced Li-ion migration barrier energy. Thus, the proposed modification strategy for Nb doping can illuminate the structural design of lithium-rich manganese-based cathode materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Stabilizing the Lithium-Rich Manganese-Based Oxide Cathode via Regulating a CEI Film
    Feng, Zhuoran
    Guo, Leyi
    Liu, Xiaofei
    Li, Wenwen
    Zhang, Ruipeng
    Wang, Dong
    Zhang, Wei
    Zheng, Weitao
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (07) : 2791 - 2799
  • [32] Trace level doping of lithium-rich cathode materials
    Lengyel, Miklos
    Shen, Kuan-Yu
    Lanigan, Deanna M.
    Martin, Jonathan M.
    Zhang, Xiaofeng
    Axelbaum, Richard L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) : 3538 - 3545
  • [33] Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application
    Lu, Zhiyuan
    Liu, Yanni
    Liao, Shijun
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1504 - 1514
  • [34] Mitigating chain degradation of lithium-rich manganese-based cathode material by surface engineering
    Cai X.
    Li S.
    Zhou J.
    Zhang J.
    Zhang N.
    Cui X.
    Energy Storage Materials, 2024, 71
  • [35] Effect of Titanium Doping of Lithium-Rich Cathode Materials
    L. S. Pechen
    E. V. Makhonina
    A. E. Medvedeva
    Yu. A. Politov
    I. L. Eremenko
    Doklady Physical Chemistry, 2022, 502 : 7 - 10
  • [36] Influence of Tin and Titanium on the Electrochemical Performance of Lithium-Rich Cathode Materials
    L. S. Pechen
    E. V. Makhonina
    A. E. Medvedeva
    Yu. A. Politov
    A. M. Rumyantsev
    Yu. M. Koshtyal
    Inorganic Materials, 2022, 58 : 1033 - 1042
  • [37] Influence of Tin and Titanium on the Electrochemical Performance of Lithium-Rich Cathode Materials
    Pechen, L. S.
    Makhonina, E. V.
    Medvedeva, A. E.
    Politov, Yu. A.
    Rumyantsev, A. M.
    Koshtyal, Yu. M.
    INORGANIC MATERIALS, 2022, 58 (10) : 1033 - 1042
  • [38] Opportunities and Challenges of Layered Lithium-Rich Manganese-Based Cathode Materials for High Energy Density Lithium-Ion Batteries
    Kou, Pengzu
    Zhang, Zhigui
    Wang, Zhiyuan
    Zheng, Runguo
    Liu, Yanguo
    Lv, Fei
    Xu, Ning
    ENERGY & FUELS, 2023, 37 (23) : 18243 - 18265
  • [39] Electrochemical Kinetics and Cycle Stability Improvement with Nb Doping for Lithium-Rich Layered Oxides
    Zubair, Muhammad
    Li, Guangyin
    Wang, Boya
    Wang, Lin
    Yu, Haijun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 503 - 512
  • [40] Doping effect of fluoride anion on microstructural and electrochemical properties of lithium-rich cathode materials
    Xie, Dazhi
    Zhou, Weishan
    Lin, Kangshou
    Hu, Chen
    Zheng, Peiming
    Hou, Xianhua
    Lam, Kwok-ho
    MATERIALS LETTERS, 2019, 253 : 82 - 85