Transformations and Bayesian density estimation

被引:9
|
作者
Bean, Andrew [1 ]
Xu, Xinyi [1 ]
MacEachern, Steven [1 ]
机构
[1] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
MIXTURES;
D O I
10.1214/16-EJS1158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dirichlet-process mixture models, favored for their large support and for the relative ease of their implementation, are popular choices for Bayesian density estimation. However, despite the models' flexibility, the performance of density estimates suffers in certain situations, in particular when the true distribution is skewed or heavy tailed. We detail a method that improves performance in a variety of settings by initially transforming the sample, choosing the transformation to facilitate estimation of the density on the new scale. The effectiveness of the method is demonstrated under a variety of simulated scenarios, and in an application to body mass index (BMI) observations from a large survey of Ohio adults.
引用
收藏
页码:3355 / 3373
页数:19
相关论文
共 50 条
  • [31] Bayesian density estimation using ranked set samples
    Ghosh, K
    Tiwari, RC
    ENVIRONMETRICS, 2004, 15 (07) : 711 - 728
  • [32] A semi-Bayesian method for nonparametric density estimation
    de Bruin, R
    Salomé, D
    Schaafsma, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 30 (01) : 19 - 30
  • [33] On consistency of nonparametric normal mixtures for Bayesian density estimation
    Lijoi, A
    Prünster, I
    Walker, SG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1292 - 1296
  • [34] Bayesian field theory nonparametric approaches to density estimation
    Lemm, JC
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL II, 2000, : 18 - 22
  • [35] Computational efficiency of Bayesian estimation techniques for "unfavorable" density
    Ivashchenko, S. M.
    EKONOMIKA I MATEMATICESKIE METODY-ECONOMICS AND MATHEMATICAL METHODS, 2021, 57 (02): : 121 - 134
  • [36] BORE: Bayesian Optimization by Density-Ratio Estimation
    Tiao, Louis C.
    Klein, Aaron
    Seeger, Matthias
    Bonilla, Edwin, V
    Archambeau, Cedric
    Ramos, Fabio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7301 - 7312
  • [37] A Bayesian model for local smoothing in kernel density estimation
    Mark J. Brewer
    Statistics and Computing, 2000, 10 : 299 - 309
  • [38] Bayesian error estimation in density-functional theory
    Mortensen, JJ
    Kaasbjerg, K
    Frederiksen, SL
    Norskov, JK
    Sethna, JP
    Jacobsen, KW
    PHYSICAL REVIEW LETTERS, 2005, 95 (21)
  • [39] Bayesian density estimation from grouped continuous data
    Lambert, Philippe
    Eilers, Paul H. C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 1388 - 1399
  • [40] Bayesian nonparametric density estimation under length bias
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 8064 - 8076