Transformations and Bayesian density estimation

被引:9
|
作者
Bean, Andrew [1 ]
Xu, Xinyi [1 ]
MacEachern, Steven [1 ]
机构
[1] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
MIXTURES;
D O I
10.1214/16-EJS1158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dirichlet-process mixture models, favored for their large support and for the relative ease of their implementation, are popular choices for Bayesian density estimation. However, despite the models' flexibility, the performance of density estimates suffers in certain situations, in particular when the true distribution is skewed or heavy tailed. We detail a method that improves performance in a variety of settings by initially transforming the sample, choosing the transformation to facilitate estimation of the density on the new scale. The effectiveness of the method is demonstrated under a variety of simulated scenarios, and in an application to body mass index (BMI) observations from a large survey of Ohio adults.
引用
收藏
页码:3355 / 3373
页数:19
相关论文
共 50 条
  • [21] Density estimation via Bayesian inference engines
    M. P. Wand
    J. C. F. Yu
    AStA Advances in Statistical Analysis, 2022, 106 : 199 - 216
  • [22] Multivariate Density Estimation by Bayesian Sequential Partitioning
    Lu, Luo
    Jiang, Hui
    Wong, Wing H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1402 - 1410
  • [23] Bayesian estimation of the spectral density of a time series
    Choudhuri, N
    Ghosal, S
    Roy, A
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1050 - 1059
  • [24] A BAYESIAN-APPROACH TO DENSITY-ESTIMATION
    THORBURN, D
    BIOMETRIKA, 1986, 73 (01) : 65 - 75
  • [25] Improved Feature Transformations for Classification Using Density Estimation
    Kankanige, Yamuna
    Bailey, James
    PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 117 - 129
  • [26] Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation
    Zougab, Nabil
    Adjabi, Smail
    Kokonendji, Celestin C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 : 28 - 38
  • [27] THE USE OF ISOMETRIC TRANSFORMATIONS AND BAYESIAN ESTIMATION IN COMPRESSIVE SENSING FOR FMRI CLASSIFICATION
    Carmi, Avishy
    Sainath, Tara N.
    Gurfil, Pini
    Kanevsky, Dimitri
    Nahamoo, David
    Ramabhadran, Bhuvana
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 493 - 496
  • [28] Practical Bayesian density estimation using mixtures of normals
    Roeder, K
    Wasserman, L
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 894 - 902
  • [29] Approximate Bayesian computation via regression density estimation
    Fan, Yanan
    Nott, David J.
    Sisson, Scott A.
    STAT, 2013, 2 (01): : 34 - 48
  • [30] Adaptive Bayesian density estimation in sup-norm
    Naulet, Zacharie
    BERNOULLI, 2022, 28 (02) : 1284 - 1308