Jitter and measurement errors in approximation and integration of Lipschitz functions

被引:1
|
作者
Dabrowska, D [1 ]
机构
[1] Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Sci, PL-01815 Warsaw, Poland
关键词
computational difficulty of problems; error analysis;
D O I
10.1023/B:NUMA.0000016602.59193.f7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to point out the differences between jitter ( the perturbations in sampling points reading) and the measurement errors. In some cases jitter may have significantly smaller influence on the radius of information than the measurement error. The class of Lipschitz functions is considered and two problems, integration and approximation, are studied.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 50 条
  • [21] THE MODULUS OF CONTINUITY OF THE REMAINDER IN THE APPROXIMATION OF LIPSCHITZ FUNCTIONS
    BLOOM, WR
    ELLIOTT, D
    JOURNAL OF APPROXIMATION THEORY, 1981, 31 (01) : 59 - 66
  • [22] Affine approximation of Lipschitz functions and nonlinear quotients
    Bates, S
    Johnson, WB
    Lindenstrauss, J
    Preiss, D
    Schechtman, G
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (06) : 1092 - 1127
  • [23] Optimally adaptive integration of univariate Lipschitz functions
    Baran, I
    Demaine, ED
    Katz, DA
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 142 - 153
  • [24] Optimal integration of Lipschitz functions with a Gaussian weight
    Curbera, F
    JOURNAL OF COMPLEXITY, 1998, 14 (01) : 122 - 149
  • [25] Optimally adaptive integration of univariate Lipschitz functions
    Baran, Ilya
    Demaine, Erik D.
    Katz, Dmitriy A.
    ALGORITHMICA, 2008, 50 (02) : 255 - 278
  • [26] Optimally Adaptive Integration of Univariate Lipschitz Functions
    Ilya Baran
    Erik D. Demaine
    Dmitriy A. Katz
    Algorithmica, 2008, 50 : 255 - 278
  • [27] Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions
    Nallapu, Vijender
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [28] Fourier Approximation of Functions Conjugate to the Functions Belonging to Weighted Lipschitz Class
    Singh, Uaday
    Srivastava, Shailesh Kumar
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 236 - +
  • [29] CONVEX POLYNOMIAL AND RIDGE APPROXIMATION OF LIPSCHITZ FUNCTIONS IN Rd
    Konovalov, V. N.
    Kopotun, K. A.
    Maiorov, V. E.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) : 957 - 976
  • [30] Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group
    Giovanna Citti
    Maria Manfredini
    Andrea Pinamonti
    Francesco Serra Cassano
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 1279 - 1308