Occupation times of sets of infinite measure for ergodic transformations

被引:17
|
作者
Aaronson, J [1 ]
Thaler, M
Zweimüller, R
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Salzburg Univ, Fachbereich Math, A-5020 Salzburg, Austria
[3] Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2AZ, England
关键词
D O I
10.1017/S0143385704001051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that T is a conservative ergodic measure-preserving transformation of the infinite measure space (X, A, mu). We study the asymptotic behaviour of occupation times of certain subsets of infinite measure. Specifically, we prove a Darling-Kac type distributional limit theorem for occupation times of barely infinite components which are separated from the rest of the space by a set of finite measure with continued-fraction (CF)-mixing return process. In the same setup we show that the ratios of occupation times of two components separated in this way diverge almost everywhere. These abstract results are illustrated by applications to interval maps with indifferent fixed points.
引用
收藏
页码:959 / 976
页数:18
相关论文
共 50 条
  • [11] INDIVIDUAL ERGODIC THEOREMS FOR INFINITE MEASURE
    Chilin, Vladimir
    Comez, Dogan
    Litvinov, Semyon
    COLLOQUIUM MATHEMATICUM, 2022, 167 (02) : 219 - 238
  • [12] Distributional limits of positive, ergodic stationary processes and infinite ergodic transformations
    Aaronson, Jon
    Weiss, Benjamin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 879 - 906
  • [13] Infinite symmetric ergodic index and related examples in infinite measure
    Loh, Isaac
    Silva, Cesar E.
    Athiwaratkun, Ben
    STUDIA MATHEMATICA, 2018, 243 (01) : 101 - 115
  • [14] ERGODIC INFINITE MEASURE PRESERVING TRANSFORMATION OF BOOLE
    ADLER, RL
    WEISS, B
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 16 (03) : 263 - 278
  • [15] Ergodic Schrodinger operators in the infinite measure setting
    Boshernitzan, Michael
    Damanik, David
    Fillman, Jake
    Lukic, Milivoje
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (02) : 873 - 902
  • [16] Notes on Ergodic Theory in Infinite Measure Spaces
    Arzumanian, Victor
    Eigen, Stanley
    Hajian, Arshang
    ARMENIAN JOURNAL OF MATHEMATICS, 2015, 7 (02): : 97 - 120
  • [17] Ergodic properties of skew products in infinite measure
    Patrícia Cirilo
    Yuri Lima
    Enrique Pujals
    Israel Journal of Mathematics, 2016, 214 : 43 - 66
  • [18] Ergodic properties of skew products in infinite measure
    Cirilo, Patricia
    Lima, Yuri
    Pujals, Enrique
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 214 (01) : 43 - 66
  • [19] ERGODIC AND MIXING PROPERTIES OF MEASURE PRESERVING TRANSFORMATIONS
    KIN, E
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (01): : 47 - &
  • [20] JOINTLY ERGODIC MEASURE-PRESERVING TRANSFORMATIONS
    BEREND, D
    BERGELSON, V
    ISRAEL JOURNAL OF MATHEMATICS, 1984, 49 (04) : 307 - 314