Ergodic properties of skew products in infinite measure

被引:2
|
作者
Cirilo, Patricia [1 ]
Lima, Yuri [2 ]
Pujals, Enrique [1 ]
机构
[1] Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Paris Saclay, Univ Paris 11, CNRS, Lab Math Orsay, F-91405 Orsay, France
基金
巴西圣保罗研究基金会; 欧洲研究理事会;
关键词
RANDOM-WALKS; TRANSITIVITY; EXTENSIONS; SYSTEMS;
D O I
10.1007/s11856-016-1344-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a"broken vertical bar, A mu) be a shift of finite type with a Markov probability, and (Y, nu) a non-atomic standard measure space. For each symbol i of the symbolic space, let I broken vertical bar (i) be a non-singular automorphism of (Y, nu). We study skew products of the form (omega, y) a dagger broken vertical bar (sigma omega, I broken vertical bar(omega 0) (y)), where sigma is the shift map on (a"broken vertical bar, A mu). We prove that, when the skew product is recurrent, it is ergodic if and only if the I broken vertical bar (i) 's have no common non-trivial invariant set. In the second part we study the skew product when a"broken vertical bar = {0, 1}(Z), A mu is a Bernoulli measure, and I broken vertical bar(0),I broken vertical bar(1) are R-extensions of a same uniquely ergodic probability-preserving automorphism. We prove that, for a large class of roof functions, the skew product is rationally ergodic with return sequence asymptotic to , and its trajectories satisfy the central, functional central and local limit theorem.
引用
收藏
页码:43 / 66
页数:24
相关论文
共 50 条