Recursive construction of hierarchical Fibonacci Cubes and hierarchical extended Fibonacci Cubes

被引:0
|
作者
Karci, A [1 ]
机构
[1] Firat Univ, Fac Engn, Dept Comp Sci, TR-23119 Elazig, Turkey
关键词
hierarchical interconnection networks; Fibonacci Cubes; extended Fibonacci Cubes; interconnection networks; hierarchical Fibonacci Cubes; hierarchical extended Fibonacci Cubes;
D O I
10.1109/ICPADS.2001.934874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hierarchical Fibonacci cubes and hierarchial extended Fibonacci cubes are recursively constructed in this paper. This property comes from the point of these derived networks. These nets are basically derived from Fibonacci series, which is recursive series.
引用
下载
收藏
页码:615 / 620
页数:6
相关论文
共 50 条
  • [21] New interconnection networks: Fibonacci Cube and Extended Fibonacci Cubes based hierarchic networks
    Karci, A
    15TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, PROCEEDINGS, 2001, : 869 - 874
  • [22] On disjoint hypercubes in Fibonacci cubes
    Gravier, Sylvain
    Mollard, Michel
    Spacapan, Simon
    Zemljic, Sara Sabrina
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 50 - 55
  • [23] Fast recognition of Fibonacci cubes
    Taranenko, Andrej
    Vesel, Aleksander
    ALGORITHMICA, 2007, 49 (02) : 81 - 93
  • [24] On a problem on generalised Fibonacci cubes
    Hilberdink, T
    Whitehead, C
    Salvi, NZ
    ARS COMBINATORIA, 2003, 68 : 39 - 47
  • [25] The parameters of Fibonacci and Lucas cubes
    Ilic, Aleksandar
    Milosevic, Marko
    ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 25 - 29
  • [26] Fibonacci (p, r)-cubes which are partial cubes
    Wei, Jianxin
    Zhang, Heping
    ARS COMBINATORIA, 2014, 115 : 197 - 209
  • [27] On the Wiener index of generalized Fibonacci cubes and Lucas cubes
    Klavzar, Sandi
    Rho, Yoomi
    DISCRETE APPLIED MATHEMATICS, 2015, 187 : 155 - 160
  • [28] FULL CUBES IN THE FIBONACCI SEQUENCE
    PETHO, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (1-2): : 117 - 127
  • [29] The observability of the Fibonacci and the Lucas cubes
    Dedó, E
    Torri, D
    Salvi, NZ
    DISCRETE MATHEMATICS, 2002, 255 (1-3) : 55 - 63
  • [30] Structure of Fibonacci cubes: a survey
    Sandi Klavžar
    Journal of Combinatorial Optimization, 2013, 25 : 505 - 522