Renyi entropies for free field theories

被引:86
|
作者
Klebanov, Igor R. [1 ]
Pufu, Silviu S. [2 ]
Sachdev, Subir [3 ]
Safdi, Benjamin R. [4 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
来源
基金
美国国家科学基金会;
关键词
Field Theories in Higher Dimensions; Statistical Methods; ENTANGLEMENT ENTROPY; HEAT KERNEL; SPACE;
D O I
10.1007/JHEP04(2012)074
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Renyi entropies S-q are useful measures of quantum entanglement; they can be calculated from traces of the reduced density matrix raised to power q, with q >= 0. For (d + 1)-dimensional conformal field theories, the Renyi entropies across Sd-1 may be extracted from the thermal partition functions of these theories on either (d+1)-dimensional de Sitter space or R x H-d, where H-d is the d-dimensional hyperbolic space. These thermal partition functions can in turn be expressed as path integrals on branched coverings of the (d+1)-dimensional sphere and S-1 x H-d, respectively. We calculate the Renyi entropies of free massless scalars and fermions in d = 2, and show how using zeta-function regularization one finds agreement between the calculations on the branched coverings of,S-3 and on S-1 x H-2. Analogous calculations for massive free fields provide monotonic interpolating functions between the Renyi entropies at the Gaussian and the trivial fixed points. Finally, we discuss similar Renyi entropy calculations in d > 2.
引用
收藏
页数:28
相关论文
共 50 条