Renyi entropies for free field theories

被引:86
|
作者
Klebanov, Igor R. [1 ]
Pufu, Silviu S. [2 ]
Sachdev, Subir [3 ]
Safdi, Benjamin R. [4 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
来源
基金
美国国家科学基金会;
关键词
Field Theories in Higher Dimensions; Statistical Methods; ENTANGLEMENT ENTROPY; HEAT KERNEL; SPACE;
D O I
10.1007/JHEP04(2012)074
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Renyi entropies S-q are useful measures of quantum entanglement; they can be calculated from traces of the reduced density matrix raised to power q, with q >= 0. For (d + 1)-dimensional conformal field theories, the Renyi entropies across Sd-1 may be extracted from the thermal partition functions of these theories on either (d+1)-dimensional de Sitter space or R x H-d, where H-d is the d-dimensional hyperbolic space. These thermal partition functions can in turn be expressed as path integrals on branched coverings of the (d+1)-dimensional sphere and S-1 x H-d, respectively. We calculate the Renyi entropies of free massless scalars and fermions in d = 2, and show how using zeta-function regularization one finds agreement between the calculations on the branched coverings of,S-3 and on S-1 x H-2. Analogous calculations for massive free fields provide monotonic interpolating functions between the Renyi entropies at the Gaussian and the trivial fixed points. Finally, we discuss similar Renyi entropy calculations in d > 2.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Renyi entropies of a black hole
    Bialas, A.
    Czyz, W.
    ACTA PHYSICA POLONICA B, 2008, 39 (08): : 1869 - 1880
  • [22] Renyi entropies for bernoulli distributions
    Bialas, A.
    Czyz, W.
    Acta Physica Polonica, Series B., 2001, 32 (10): : 2793 - 2800
  • [23] Optimal Transport to Renyi Entropies
    Rioul, Olivier
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 143 - 150
  • [24] ON THE STATISTICAL ESTIMATION OF RENYI ENTROPIES
    Liitiainen, Elia
    Lendasse, Amaury
    Corona, Francesco
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 192 - 197
  • [25] Holographic phases of Renyi entropies
    Belin, Alexandre
    Maloney, Alexander
    Matsuura, Shunji
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [26] On Renyi entropies of order statistics
    Thapliyal, Richa
    Taneja, H. C.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (06)
  • [27] Holographic charged Renyi entropies
    Belin, Alexandre
    Hung, Ling-Yan
    Maloney, Alexander
    Matsuura, Shunji
    Myers, Robert C.
    Sierens, Todd
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [28] Renyi entropies in particle cascades
    Bialas, A
    Czyz, W
    Ostruszka, A
    ACTA PHYSICA POLONICA B, 2003, 34 (01): : 69 - 85
  • [29] Renyi entropies in multiparticle production
    Bialas, A
    Czyz, W
    ACTA PHYSICA POLONICA B, 2000, 31 (12): : 2803 - 2817
  • [30] UNIFYING ENTROPIES OF QUANTUM LOGIC BASED ON RENYI ENTROPIES
    Giski, Zahra Eslami
    Ebrahimzadeh, Abolfazl
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (03) : 305 - 327