Can the SARS-CoV-2 Spike Protein Bind Integrins Independent of the RGD Sequence?

被引:13
|
作者
Beaudoin, Christopher A. [1 ]
Hamaia, Samir W. [2 ]
Huang, Christopher L. -H. [2 ,3 ]
Blundell, Tom L. [1 ]
Jackson, Antony P. [2 ]
机构
[1] Univ Cambridge, Dept Biochem, Sanger Bldg, Cambridge, England
[2] Univ Cambridge, Dept Biochem, Hopkins Bldg, Cambridge, England
[3] Univ Cambridge, Physiol Lab, Cambridge, England
来源
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY | 2021年 / 11卷
基金
英国惠康基金;
关键词
SARS-CoV-2; SARS-CoV-2 spike protein; integrin; integrin-binding motif; RGD; bioinformatics; STRUCTURAL BASIS; VIRUS; ALPHA-V-BETA-3; RECOGNITION; PEPTIDE; ATN-161; ENTRY; CELLS;
D O I
10.3389/fcimb.2021.765300
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The RGD motif in the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) spike protein has been predicted to bind RGD-recognizing integrins. Recent studies have shown that the spike protein does, indeed, interact with alpha(V)beta(3) and alpha(5)beta(1) integrins, both of which bind to RGD-containing ligands. However, computational studies have suggested that binding between the spike RGD motif and integrins is not favourable, even when unfolding occurs after conformational changes induced by binding to the canonical host entry receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, non-RGD-binding integrins, such as alpha(x), have been suggested to interact with the SARS-CoV-2 spike protein. Other viral pathogens, such as rotaviruses, have been recorded to bind integrins in an RGD-independent manner to initiate host cell entry. Thus, in order to consider the potential for the SARS-CoV-2 spike protein to bind integrins independent of the RGD sequence, we investigate several factors related to the involvement of integrins in SARS-CoV-2 infection. First, we review changes in integrin expression during SARS-CoV-2 infection to identify which integrins might be of interest. Then, all known non-RGD integrin-binding motifs are collected and mapped to the spike protein receptor-binding domain and analyzed for their 3D availability. Several integrin-binding motifs are shown to exhibit high sequence similarity with solvent accessible regions of the spike receptor-binding domain. Comparisons of these motifs with other betacoronavirus spike proteins, such as SARS-CoV and RaTG13, reveal that some have recently evolved while others are more conserved throughout phylogenetically similar betacoronaviruses. Interestingly, all of the potential integrin-binding motifs, including the RGD sequence, are conserved in one of the known pangolin coronavirus strains. Of note, the most recently recorded mutations in the spike protein receptor-binding domain were found outside of the putative integrin-binding sequences, although several mutations formed inside and close to one motif, in particular, may potentially enhance binding. These data suggest that the SARS-CoV-2 spike protein may interact with integrins independent of the RGD sequence and may help further explain how SARS-CoV-2 and other viruses can evolve to bind to integrins.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Distinct conformational states of SARS-CoV-2 spike protein
    Cai, Yongfei
    Zhang, Jun
    Xiao, Tianshu
    Peng, Hanqin
    Sterling, Sarah M.
    Walsh, Richard M., Jr.
    Rawson, Shaun
    Rits-Volloch, Sophia
    Chen, Bing
    SCIENCE, 2020, 369 (6511) : 1586 - +
  • [32] Conformational variability of loops in the SARS-CoV-2 spike protein
    Wong, Samuel W. K.
    Liu, Zongjun
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2022, 90 (03) : 691 - 703
  • [33] The SARS-CoV-2 spike protein: balancing stability and infectivity
    Imre Berger
    Christiane Schaffitzel
    Cell Research, 2020, 30 : 1059 - 1060
  • [34] A thermostable, closed SARS-CoV-2 spike protein trimer
    Xiaoli Xiong
    Kun Qu
    Katarzyna A. Ciazynska
    Myra Hosmillo
    Andrew P. Carter
    Soraya Ebrahimi
    Zunlong Ke
    Sjors H. W. Scheres
    Laura Bergamaschi
    Guinevere L. Grice
    Ying Zhang
    James A. Nathan
    Stephen Baker
    Leo C. James
    Helen E. Baxendale
    Ian Goodfellow
    Rainer Doffinger
    John A. G. Briggs
    Nature Structural & Molecular Biology, 2020, 27 : 934 - 941
  • [35] Evaluation of spike protein antigens for SARS-CoV-2 serology
    Jagtap, Suraj
    Ratnasri, K.
    Valloly, Priyanka
    Sharma, Rakhi
    Maurya, Satyaghosh
    Gaigore, Anushree
    Ardhya, Chitra
    Biligi, Dayananda S.
    Desiraju, Bapu Koundinya
    Natchu, Uma Chandra Mouli
    Saini, Deepak Kumar
    Roy, Rahul
    JOURNAL OF VIROLOGICAL METHODS, 2021, 296
  • [36] The SARS-CoV-2 spike protein: balancing stability and infectivity
    Berger, Imre
    Schaffitzel, Christiane
    CELL RESEARCH, 2020, 30 (12) : 1059 - 1060
  • [37] Emergence of SARS-CoV-2 spike protein at the vaccination site
    Beck, Annika
    Dietenberger, Hanna
    Kunz, Sebastian N.
    Mellert, Kevin
    Moeller, Peter
    IMMUNITY INFLAMMATION AND DISEASE, 2023, 11 (03)
  • [38] Interaction of SARS-CoV-2 spike protein with amyloid beta
    Izadpanah, Amin
    Alberts, Julie
    Rappaport, Jay
    Datta, Prasun
    JOURNAL OF MEDICAL PRIMATOLOGY, 2023, 52 (05) : 342 - 342
  • [39] Terahertz and Infrared Spectroscopy of SARS-CoV-2 Spike Protein
    Konnikova, M.
    Heinz, T.
    Mankova, A.
    Cherkasova, O.
    Butylin, A.
    Peng, Y.
    Shkurinov, A.
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [40] Evolution of the SARS-CoV-2 spike protein in the human host
    Antoni G. Wrobel
    Donald J. Benton
    Chloë Roustan
    Annabel Borg
    Saira Hussain
    Stephen R. Martin
    Peter B. Rosenthal
    John J. Skehel
    Steven J. Gamblin
    Nature Communications, 13