Can the SARS-CoV-2 Spike Protein Bind Integrins Independent of the RGD Sequence?

被引:13
|
作者
Beaudoin, Christopher A. [1 ]
Hamaia, Samir W. [2 ]
Huang, Christopher L. -H. [2 ,3 ]
Blundell, Tom L. [1 ]
Jackson, Antony P. [2 ]
机构
[1] Univ Cambridge, Dept Biochem, Sanger Bldg, Cambridge, England
[2] Univ Cambridge, Dept Biochem, Hopkins Bldg, Cambridge, England
[3] Univ Cambridge, Physiol Lab, Cambridge, England
基金
英国惠康基金;
关键词
SARS-CoV-2; SARS-CoV-2 spike protein; integrin; integrin-binding motif; RGD; bioinformatics; STRUCTURAL BASIS; VIRUS; ALPHA-V-BETA-3; RECOGNITION; PEPTIDE; ATN-161; ENTRY; CELLS;
D O I
10.3389/fcimb.2021.765300
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The RGD motif in the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) spike protein has been predicted to bind RGD-recognizing integrins. Recent studies have shown that the spike protein does, indeed, interact with alpha(V)beta(3) and alpha(5)beta(1) integrins, both of which bind to RGD-containing ligands. However, computational studies have suggested that binding between the spike RGD motif and integrins is not favourable, even when unfolding occurs after conformational changes induced by binding to the canonical host entry receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, non-RGD-binding integrins, such as alpha(x), have been suggested to interact with the SARS-CoV-2 spike protein. Other viral pathogens, such as rotaviruses, have been recorded to bind integrins in an RGD-independent manner to initiate host cell entry. Thus, in order to consider the potential for the SARS-CoV-2 spike protein to bind integrins independent of the RGD sequence, we investigate several factors related to the involvement of integrins in SARS-CoV-2 infection. First, we review changes in integrin expression during SARS-CoV-2 infection to identify which integrins might be of interest. Then, all known non-RGD integrin-binding motifs are collected and mapped to the spike protein receptor-binding domain and analyzed for their 3D availability. Several integrin-binding motifs are shown to exhibit high sequence similarity with solvent accessible regions of the spike receptor-binding domain. Comparisons of these motifs with other betacoronavirus spike proteins, such as SARS-CoV and RaTG13, reveal that some have recently evolved while others are more conserved throughout phylogenetically similar betacoronaviruses. Interestingly, all of the potential integrin-binding motifs, including the RGD sequence, are conserved in one of the known pangolin coronavirus strains. Of note, the most recently recorded mutations in the spike protein receptor-binding domain were found outside of the putative integrin-binding sequences, although several mutations formed inside and close to one motif, in particular, may potentially enhance binding. These data suggest that the SARS-CoV-2 spike protein may interact with integrins independent of the RGD sequence and may help further explain how SARS-CoV-2 and other viruses can evolve to bind to integrins.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] SARS-CoV-2 Spike Protein Unlikely to Bind to Integrins via the Arg-Gly-Asp (RGD) Motif of the Receptor Binding Domain: Evidence From Structural Analysis and Microscale Accelerated Molecular Dynamics
    Othman, Houcemeddine
    Messaoud, Haifa Ben
    Khamessi, Oussema
    Ben-Mabrouk, Hazem
    Ghedira, Kais
    Bharuthram, Avani
    Treurnicht, Florette
    Achilonu, Ikechukwu
    Sayed, Yasien
    Srairi-Abid, Najet
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [22] Spike protein-independent attenuation of SARS-CoV-2 Omicron variant in laboratory mice
    Liu, Shufeng
    Selvaraj, Prabhuanand
    Sangare, Kotou
    Luan, Binquan
    Wang, Tony T.
    CELL REPORTS, 2022, 40 (11):
  • [23] Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind With Human ACE2
    Xie, Yixin
    Karki, Chitra B.
    Du, Dan
    Li, Haotian
    Wang, Jun
    Sobitan, Adebiyi
    Teng, Shaolei
    Tang, Qiyi
    Li, Lin
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [24] Characterization of a SARS-CoV-2 spike protein reference material
    Bradley B. Stocks
    Marie-Pier Thibeault
    Joseph D. Schrag
    Jeremy E. Melanson
    Analytical and Bioanalytical Chemistry, 2022, 414 : 3561 - 3569
  • [25] SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis
    Panigrahi, Soumya
    Goswami, Tamal
    Ferrari, Brian
    Antonelli, Christopher J.
    Bazdar, Douglas A.
    Gilmore, Hannah
    Freeman, Michael L.
    Lederman, Michael M.
    Sieg, Scott F.
    MICROBIOLOGY SPECTRUM, 2021, 9 (03):
  • [26] A thermostable, closed SARS-CoV-2 spike protein trimer
    Xiong, Xiaoli
    Qu, Kun
    Ciazynska, Katarzyna A.
    Hosmillo, Myra
    Carter, Andrew P.
    Ebrahimi, Soraya
    Ke, Zunlong
    Scheres, Sjors H. W.
    Bergamaschi, Laura
    Grice, Guinevere L.
    Zhang, Ying
    Nathan, James A.
    Baker, Stephen
    James, Leo C.
    Baxendale, Helen E.
    Goodfellow, Ian
    Doffinger, Rainer
    Briggs, John A. G.
    Bradley, John
    Lyons, Paul A.
    Smith, Kenneth G. C.
    Toshner, Mark
    Elmer, Anne
    Ribeiro, Carla
    Kourampa, Jenny
    Jose, Sherly
    Kennet, Jane
    Rowlands, Jane
    Meadows, Anne
    O'Brien, Criona
    Rastall, Rebecca
    Crucusio, Cherry
    Hewitt, Sarah
    Price, Jane
    Calder, Jo
    Canna, Laura
    Bucke, Ashlea
    Tordesillas, Hugo
    Harris, Julie
    Ruffolo, Valentina
    Domingo, Jason
    Graves, Barbara
    Butcher, Helen
    Caputo, Daniela
    Le Gresley, Emma
    Dunmore, Benjamin J.
    Martin, Jennifer
    Legchenko, Ekaterina
    Treacy, Carmen
    Huang, Christopher
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (10) : 934 - +
  • [27] Evolution of the SARS-CoV-2 spike protein in the human host
    Wrobel, Antoni G.
    Benton, Donald J.
    Roustan, Chloe
    Borg, Annabel
    Hussain, Saira
    Martin, Stephen R.
    Rosenthal, Peter B.
    Skehel, John J.
    Gamblin, Steven J.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [28] Computational epitope map of SARS-CoV-2 spike protein
    Sikora, Mateusz
    von Bulow, Soren
    Blanc, Florian E. C.
    Gecht, Michael
    Covino, Roberto
    Hummer, Gerhard
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (04)
  • [29] Characterization of a SARS-CoV-2 spike protein reference material
    Stocks, Bradley B.
    Thibeault, Marie-Pier
    Schrag, Joseph D.
    Melanson, Jeremy E.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (12) : 3561 - 3569
  • [30] Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2
    Tanikawa, Takashi
    Kiba, Yuka
    Yu, James
    Hsu, Kate
    Chen, Shinder
    Ishii, Ayako
    Yokogawa, Takami
    Suzuki, Ryuichiro
    Inoue, Yutaka
    Kitamura, Masashi
    MOLECULES, 2022, 27 (17):