Progressions in sequences of nearly consecutive integers

被引:1
|
作者
Alon, N [1 ]
Zaks, A
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
D O I
10.1006/jcta.1998.2886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For k > 2 and r greater than or equal to 2, let G(k, r) denote the smallest positive integer g such that every increasing sequence of g integers {a(1), a(2), ..., a(g)} with gaps a(j + 1) - a(j) is an element of{1, ..., r}, 1 less than or equal to j less than or equal to g - 1 contains a k-term arithmetic progression. Brown and Hare proved that G(k, 2) > root(k - 1)/2 (4/3)((k - 1)/2) and that G(k, 2s - 1) > (s(k - 2)/ek)(1 + o(1)) for all s greater than or equal to 2. Here we improve these bounds and prove that G(k, 2) > 2(k - O(root k)) and, more generally, that for every fixed r greater than or equal to 2 there exists a constant c(r) > 0 such that G(k, r) > r(k - cr root k) for all k. (C) 1998 Academic Press
引用
收藏
页码:99 / 109
页数:11
相关论文
共 50 条
  • [1] ON THE SUM OF CONSECUTIVE INTEGERS IN SEQUENCES
    Tsai, Mu-Tsun
    Zaharescu, Alexandru
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 643 - 652
  • [2] ON THE SUM OF CONSECUTIVE INTEGERS IN SEQUENCES II
    Tsai, Mu-Tsun
    Zaharescu, Alexandru
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (05) : 1281 - 1299
  • [3] Sequences of Integers Avoiding 3-term Arithmetic Progressions
    Sharma, Arun
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [4] Computing Long Sequences of Consecutive Fibonacci Integers with TensorFlow
    Drakopoulos, Georgios
    Liapakis, Xenophon
    Spyrou, Evaggelos
    Tzimas, Giannis
    Mylonas, Phivos
    Sioutas, Spyros
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS (AIAI 2019), 2019, 560 : 150 - 160
  • [5] Magic Square and Arrangement of Consecutive Integers That Avoids k-Term Arithmetic Progressions
    Sim, Kai An
    Wong, Kok Bin
    [J]. MATHEMATICS, 2021, 9 (18)
  • [6] On the maximal length of two sequences of integers in arithmetic progressions with the same prime divisors
    Balasubramanian, R
    Langevin, M
    Shorey, TN
    Waldschmidt, M
    [J]. MONATSHEFTE FUR MATHEMATIK, 1996, 121 (04): : 295 - 307
  • [7] Consecutive generalized r-free integers in Beatty sequences
    Srisopha, Sunanta
    Srichan, Teerapat
    Mavecha, Sukrawan
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [8] Consecutive generalized r-free integers in Beatty sequences
    Sunanta Srisopha
    Teerapat Srichan
    Sukrawan Mavecha
    [J]. Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [9] ULTRAFRIABLE INTEGERS IN ARITHMETIC PROGRESSIONS
    Dartyge, Cecile
    Feutrie, David
    Tenenbaum, Gerald
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (01): : 149 - 174
  • [10] COVERING THE INTEGERS WITH ARITHMETIC PROGRESSIONS
    SIMPSON, RJ
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 32 (03) : 461 - 463