ULTRAFRIABLE INTEGERS IN ARITHMETIC PROGRESSIONS

被引:0
|
作者
Dartyge, Cecile [1 ]
Feutrie, David [1 ]
Tenenbaum, Gerald [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, France
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2022年 / 73卷 / 01期
关键词
LARGE PRIME FACTORS; SMOOTH NUMBERS;
D O I
10.1093/qmath/haab025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A natural integer is called y-ultrafriable if none of the prime powers occurring in its canonical decomposition exceed y. We investigate the distribution of y-ultrafriable integers not exceeding x among arithmetic progressions to the modulus q. Given a sufficiently small, positive constant epsilon, we obtain uniform estimates valid for q <= y(c/log2 y) whenever log y <= (log x)(epsilon), and for q <= root y if (log x)(2+epsilon) <= y <= x.
引用
收藏
页码:149 / 174
页数:26
相关论文
共 50 条