ON THE SUM OF CONSECUTIVE INTEGERS IN SEQUENCES II

被引:0
|
作者
Tsai, Mu-Tsun [1 ]
Zaharescu, Alexandru [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Consecutive integer; arithmetic progression; prime number; representation;
D O I
10.1142/S1793042112500753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a sequence of natural numbers, r(A)(n) be the number of ways to represent n as a sum of consecutive elements in A, and M-A(x) := Sigma(n <= x) r(A)(n). We give a new short proof of LeVeque's formula regarding M-A(x) when A is an arithmetic progression, and then extend the proof to give asymptotic formulas for the case when A behaves almost like an arithmetic progression, and also when A is the set of primes in an arithmetic progression.
引用
收藏
页码:1281 / 1299
页数:19
相关论文
共 50 条
  • [1] ON THE SUM OF CONSECUTIVE INTEGERS IN SEQUENCES
    Tsai, Mu-Tsun
    Zaharescu, Alexandru
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 643 - 652
  • [2] SUM OF CONSECUTIVE INTEGERS
    PRIELIPP, B
    [J]. FIBONACCI QUARTERLY, 1984, 22 (01): : 87 - 87
  • [3] ON REPRESENTATIONS AS A SUM OF CONSECUTIVE INTEGERS
    LEVEQUE, WJ
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (04): : 399 - 405
  • [4] ON SUM OF SQUARES OF 2 CONSECUTIVE INTEGERS
    COHEN, EL
    [J]. MATHEMATICS OF COMPUTATION, 1967, 21 (99) : 460 - +
  • [5] Progressions in sequences of nearly consecutive integers
    Alon, N
    Zaks, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 84 (01) : 99 - 109
  • [6] ON THE NUMBER OF REPRESENTATIONS OF AN INTEGER AS A SUM OF CONSECUTIVE INTEGERS
    LEVEQUE, WJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (07): : 688 - 689
  • [7] On the sum of digits of some sequences of integers
    Cilleruelo, Javier
    Luca, Florian
    Rue, Juanjo
    Zumalacarregui, Ana
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (01): : 188 - 195
  • [8] REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES
    Hamlin, Nathan
    Webb, William A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (02): : 99 - 105
  • [9] Computing Long Sequences of Consecutive Fibonacci Integers with TensorFlow
    Drakopoulos, Georgios
    Liapakis, Xenophon
    Spyrou, Evaggelos
    Tzimas, Giannis
    Mylonas, Phivos
    Sioutas, Spyros
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS (AIAI 2019), 2019, 560 : 150 - 160
  • [10] Almost perfect powers in consecutive integers (II)
    Saradha, N.
    Shorey, T. N.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 649 - 658