A novel quantification of information for longitudinal data analyzed by mixed-effects modeling

被引:2
|
作者
Yuan, Min [1 ]
Li, Yi [2 ]
Yang, Yaning [2 ]
Xu, Jinfeng [3 ]
Tao, Fangbiao [1 ]
Zhao, Liang [4 ]
Zhou, Honghui [5 ]
Pinheiro, Jose [5 ]
Xu, Xu Steven [6 ]
机构
[1] Anhui Med Univ, Sch Publ Hlth Adm, Hefei, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, Hefei, Peoples R China
[3] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[4] US FDA, Div Quantitat Methods & Modeling, OGD ORS, Silver Spring, MD USA
[5] Janssen Res & Dev, Stat Modeling, Raritan, NJ USA
[6] Genmab US Inc, Data Sci, Translat Res, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
Fisher information; longitudinal data; nonlinear mixed-effects model; relative information;
D O I
10.1002/pst.1996
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nonlinear mixed-effects (NLME) modeling is one of the most powerful tools for analyzing longitudinal data especially under the sparse sampling design. The determinant of the Fisher information matrix is a commonly used global metric of the information that can be provided by the data under a given model. However, in clinical studies, it is also important to measure how much information the data provide for a certain parameter of interest under the assumed model, for example, the clearance in population pharmacokinetic models. This paper proposes a new, easy-to-interpret information metric, the "relative information" (RI), which is designed for specific parameters of a model and takes a value between 0% and 100%. We establish the relationship between interindividual variability for a specific parameter and the variance of the associated parameter estimator, demonstrating that, under a "perfect" experiment (eg, infinite samples or/and minimum experimental error), the RI and the variance of the model parameter estimator converge, respectively, to 100% and the ratio of the interindividual variability for that parameter and the number of subjects. Extensive simulation experiments and analyses of three real datasets show that our proposed RI metric can accurately characterize the information for parameters of interest for NLME models. The new information metric can be readily used to facilitate study designs and model diagnosis.
引用
收藏
页码:388 / 398
页数:11
相关论文
共 50 条
  • [21] Examples of mixed-effects modeling with crossed random effects and with binomial data
    Quene, Hugo
    van den Bergh, Huub
    [J]. JOURNAL OF MEMORY AND LANGUAGE, 2008, 59 (04) : 413 - 425
  • [22] Robust transformation mixed-effects models for longitudinal continuous proportional data
    Zhang, Peng
    Qiu, Zhenguo
    Fu, Yuejiao
    Song, Peter X. -K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 266 - 281
  • [23] Linear mixed-effects model for longitudinal complex data with diversified characteristics
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    Lu, Shan
    Saporta, Gilbert
    [J]. JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2020, 5 (02) : 105 - 124
  • [24] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    [J]. BMC Medical Research Methodology, 24
  • [25] Linear mixed-effects model for longitudinal complex data with diversified characteristics
    Zhichao Wang
    Huiwen Wang
    Shanshan Wang
    Shan Lu
    Gilbert Saporta
    [J]. Journal of Management Science and Engineering, 2020, 5 (02) : 105 - 124
  • [26] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [27] Subgroup analysis based on structured mixed-effects models for longitudinal data
    Shen, Juan
    Qu, Annie
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2020, 30 (04) : 607 - 622
  • [28] Mixed-effects Location Scale Modeling For The Analysis Of Accelerometry Data
    Welch, Whitney A.
    Hedeker, Donald
    Spring, Bonnie
    Siddique, Juned
    [J]. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2020, 52 (07) : 821 - 821
  • [29] On the Estimation of Nonlinear Mixed-Effects Models and Latent Curve Models for Longitudinal Data
    Blozis, Shelley A.
    Harring, Jeffrey R.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) : 904 - 920
  • [30] Mixed-effects models for GAW18 longitudinal blood pressure data
    Wonil Chung
    Fei Zou
    [J]. BMC Proceedings, 8 (Suppl 1)