Examples of mixed-effects modeling with crossed random effects and with binomial data

被引:385
|
作者
Quene, Hugo [1 ]
van den Bergh, Huub [1 ]
机构
[1] Univ Utrecht, Utrecht Inst Linguist OTS, NL-3512 JK Utrecht, Netherlands
关键词
Mixed-effects models; Crossed random effects; Analysis of variance; Logistic regression; GLMM;
D O I
10.1016/j.jml.2008.02.002
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not nested, Traditional ANOVAs are compared against these crossed mixed-effects models, for simulated and real data. Results indicate that the mixed-effects method has a lower risk of capitalization on chance (Type I error). Second, mixed-effects models of logistic regression (generalized linear mixed models, GLMM) are discussed and demonstrated with simulated binomial data. Mixed-effects models effectively solve the "language-as-fixed-effect-fallacy", and have several other advantages. In conclusion, mixed-effects models provide a superior method for analyzing psycholinguistic data. (C) 2008 Elsevier Inc. All rights reserved,
引用
收藏
页码:413 / 425
页数:13
相关论文
共 50 条
  • [1] Mixed-effects modeling with crossed random effects for subjects and items
    Baayen, R. H.
    Davidson, D. J.
    Bates, D. M.
    JOURNAL OF MEMORY AND LANGUAGE, 2008, 59 (04) : 390 - 412
  • [2] lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects
    Visalli, Antonino
    Montefinese, Maria
    Viviani, Giada
    Finos, Livio
    Vallesi, Antonino
    Ambrosini, Ettore
    JOURNAL OF NEUROSCIENCE METHODS, 2024, 401
  • [3] Mixed-Effects Models with Crossed Random Effects for Multivariate Longitudinal Data
    Angel Martinez-Huertas, Jose
    Ferrer, Emilio
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (01) : 105 - 122
  • [4] A Bayesian approach to functional mixed-effects modeling for longitudinal data with binomial outcomes
    Kliethermes, Stephanie
    Oleson, Jacob
    STATISTICS IN MEDICINE, 2014, 33 (18) : 3130 - 3146
  • [5] Recovering Crossed Random Effects in Mixed-Effects Models Using Model Averaging
    Angel Martinez-Huertas, Jose
    Olmos, Ricardo
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2022, 18 (04) : 298 - 323
  • [6] Mixed-effects random forest for clustered data
    Hajjem, Ahlem
    Bellavance, Francois
    Larocque, Denis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (06) : 1313 - 1328
  • [7] Modeling nonlinear relationships in ERP data using mixed-effects regression with R examples
    Tremblay, Antoine
    Newman, Aaron J.
    PSYCHOPHYSIOLOGY, 2015, 52 (01) : 124 - 139
  • [8] Nonlinear mixed-effects modeling of MNREAD data
    Cheung, Sing-Hang
    Kallie, Christopher S.
    Legge, Gordon E.
    Cheong, Allen M. Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (02) : 828 - 835
  • [9] Model Selection and Model Averaging for Mixed-Effects Models with Crossed Random Effects for Subjects and Items
    Martinez-Huertas, Jose A.
    Olmos, Ricardo
    Ferrer, Emilio
    MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (04) : 603 - 619
  • [10] The Need for Mixed-Effects Modeling with Population Dichotomous Data
    Ikuko Yano
    Stuart L. Beal
    Lewis B. Sheiner
    Journal of Pharmacokinetics and Pharmacodynamics, 2001, 28 (4) : 109 - 128