Examples of mixed-effects modeling with crossed random effects and with binomial data

被引:385
|
作者
Quene, Hugo [1 ]
van den Bergh, Huub [1 ]
机构
[1] Univ Utrecht, Utrecht Inst Linguist OTS, NL-3512 JK Utrecht, Netherlands
关键词
Mixed-effects models; Crossed random effects; Analysis of variance; Logistic regression; GLMM;
D O I
10.1016/j.jml.2008.02.002
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not nested, Traditional ANOVAs are compared against these crossed mixed-effects models, for simulated and real data. Results indicate that the mixed-effects method has a lower risk of capitalization on chance (Type I error). Second, mixed-effects models of logistic regression (generalized linear mixed models, GLMM) are discussed and demonstrated with simulated binomial data. Mixed-effects models effectively solve the "language-as-fixed-effect-fallacy", and have several other advantages. In conclusion, mixed-effects models provide a superior method for analyzing psycholinguistic data. (C) 2008 Elsevier Inc. All rights reserved,
引用
收藏
页码:413 / 425
页数:13
相关论文
共 50 条
  • [21] Tree-Structured Mixed-Effects Regression Modeling for Longitudinal Data
    Eo, Soo-Heang
    Cho, HyungJun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (03) : 740 - 760
  • [22] Conditional mixed models with crossed random effects
    Tibaldi, Fabian S.
    Verbeke, Geert
    Molenberghs, Geert
    Renard, Didier
    Van den Noortgate, Wirn
    de Boeck, Paul
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2007, 60 : 351 - 365
  • [23] A novel quantification of information for longitudinal data analyzed by mixed-effects modeling
    Yuan, Min
    Li, Yi
    Yang, Yaning
    Xu, Jinfeng
    Tao, Fangbiao
    Zhao, Liang
    Zhou, Honghui
    Pinheiro, Jose
    Xu, Xu Steven
    PHARMACEUTICAL STATISTICS, 2020, 19 (04) : 388 - 398
  • [24] Mixed-effects models for joint modeling of sequence data in longitudinal studies
    Yan Yan Wu
    Laurent Briollais
    BMC Proceedings, 8 (Suppl 1)
  • [25] An Examination of a Functional Mixed-Effects Modeling Approach to the Analysis of Longitudinal Data
    Fine, Kimberly L.
    Suk, Hye Won
    Grimm, Kevin J.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (04) : 475 - 491
  • [26] Random covariances and mixed-effects models for imputing multivariate multilevel continuous data
    Yucel, Recai M.
    STATISTICAL MODELLING, 2011, 11 (04) : 351 - 370
  • [27] Protective estimation of mixed-effects logistic regression when data are not missing at random
    Skrondal, A.
    Rabe-Hesketh, S.
    BIOMETRIKA, 2014, 101 (01) : 175 - 188
  • [28] Mixed-effects modelling for crossed and nested data: an analysis of dengue fever in the state of Goias, Brazil
    Oliveira, A. N.
    Menezes, R.
    Faria, S.
    Afonso, P.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (13-15) : 2912 - 2926
  • [29] Nonlinear Mixed-Effects Modeling Programs in R
    Stegmann, Gabriela
    Jacobucci, Ross
    Harring, Jeffrey R.
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 160 - 165
  • [30] Mixed-Effects Modeling of Optimisation Algorithm Performance
    Gagliolo, Matteo
    Legrand, Catherine
    Birattari, Mauro
    ENGINEERING STOCHASTIC LOCAL SEARCH ALGORITHMS: DESIGNING, IMPLEMENTING AND ANALYZING EFFECTIVE HEURISTICS, 2009, 5752 : 150 - +