Robust and High Spatial Resolution Light Addressable Electrochemistry Using Hematite (α-Fe2O3) Photoanodes

被引:23
|
作者
Seo, Daye [1 ]
Lim, Sung Yul [1 ,3 ]
Lee, Jihye [1 ]
Yun, Jeongse [1 ]
Chung, Taek Dong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[2] Adv Inst Convergence Technol, Suwon 16229, Gyeonggi Do, South Korea
[3] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
electrochemical imaging; light addressable electrochemistry (LAE); photoelectrochemistry (PEC); hematite; virtual electrode; dopamine; GUIDED ELECTRODEPOSITION; HYDROGEN EVOLUTION; QUANTUM DOTS; DOPAMINE; CELLS; MICROSCOPY; BEHAVIOR; NEUROTRANSMITTERS; SEMICONDUCTORS; OXIDATION;
D O I
10.1021/acsami.8b10812
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Light addressable/activated electrochemistry (LAE) has recently attracted attention as it can provide spatially resolved electrochemical information without using pre-patterned electrodes whose sizes and positions are unchangeable. Here, we propose hematite (alpha-Fe2O3) as the photoanode for LAE, which does not require any sort of surface modification for protection or facilitating charge transfer. As experimentally confirmed with various redox species, hematite is stable enough to be used for repetitive electroanalytical measurements. More importantly, it offers exceptionally high spatial resolution so that the "virtual electrode" is exactly as large as the light spot owing to the short diffusion length of the minority carriers. Quantitative analysis of dopamine in this study shows that the hematite-based photoanode is a promising platform for many potential LAE applications including spatially selective detection of oxidizable biomolecules.
引用
收藏
页码:33662 / 33668
页数:7
相关论文
共 50 条
  • [1] Hematite (α-Fe2O3) Photoanodes for the Photooxidation of Water
    Herrmann-Geppert, I.
    Bogdanoff, P.
    Hepperle, L.
    Fiechter, S.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33): : 201 - 212
  • [2] High Solar Flux Concentration Water Splitting with Hematite ( α-Fe2O3) Photoanodes
    Segev, Gideon
    Dotan, Hen
    Malviya, Kirtiman Deo
    Kay, Asaf
    Mayer, Matthew T.
    Graetzel, Michael
    Rothschild, Avner
    ADVANCED ENERGY MATERIALS, 2016, 6 (01)
  • [3] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [4] Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes
    Barroso, Monica
    Pendlebury, Stephanie R.
    Cowan, Alexander J.
    Durrant, James R.
    CHEMICAL SCIENCE, 2013, 4 (07) : 2724 - 2734
  • [5] Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes
    Kirtiman Deo Malviya
    Hen Dotan
    Ki Ro Yoon
    Il-Doo Kim
    Avner Rothschild
    Journal of Materials Research, 2016, 31 : 1565 - 1573
  • [6] Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes
    Malviya, Kirtiman Deo
    Dotan, Hen
    Yoon, Ki Ro
    Kim, Il-Doo
    Rothschild, Avner
    JOURNAL OF MATERIALS RESEARCH, 2016, 31 (11) : 1565 - 1573
  • [7] Different Roles of Fe1-xNixOOH Cocatalyst on Hematite (α-Fe2O3) Photoanodes with Different Dopants
    Tsyganok, Anton
    Klotz, Dino
    Malviya, Kirtiman Deo
    Rothschild, Avner
    Grave, Daniel A.
    ACS CATALYSIS, 2018, 8 (04): : 2754 - 2759
  • [8] Hematite Photoanodes: Synergetic Enhancement of Light Harvesting and Charge Management by Sandwiched with Fe2TiO5/Fe2O3/Pt Structures
    Wang, Lei
    Nhat Truong Nguyen
    Huang, Xiaojuan
    Schmuki, Patrik
    Bi, Yingpu
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (46)
  • [9] Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3)
    Hearne, Giovanni
    Pischedda, Vittoria
    JOURNAL OF SOLID STATE CHEMISTRY, 2012, 187 : 134 - 142
  • [10] Technetium Incorporation into Hematite (α-Fe2O3)
    Skomurski, Frances N.
    Rosso, Kevin M.
    Krupka, Kenneth M.
    McGrail, B. Pete
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (15) : 5855 - 5861