Kahler-Ricci solitons on compact complex manifolds with C1(M)>0

被引:29
|
作者
Cao, HD [1 ]
Tian, G
Zhu, XH
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1007/s00039-005-0522-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the relation between the existence of Kahler-Ricci solitons and a certain functional associated to some complex Monge-Ampere equation on compact complex manifolds with positive first Chern class. In particular, we obtain a strong inequality of Moser-Trudinger type on a compact complex manifold admitting a Kahler-Ricci soliton.
引用
收藏
页码:697 / 719
页数:23
相关论文
共 48 条
  • [1] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [2] Kähler–Ricci solitons on compact complex manifolds with C1(M) > 0
    Huai-Dong Cao
    Gang Tian
    Xiaohua Zhu
    Geometric & Functional Analysis GAFA, 2005, 15 : 697 - 719
  • [3] Special Kahler-Ricci potentials on compact Kahler manifolds
    Derdzinski, A.
    Maschler, G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 : 73 - 116
  • [4] Cusp Kahler-Ricci flow on compact Kahler manifolds
    Liu, Jiawei
    Zhang, Xi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 289 - 306
  • [5] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [6] ON COMPLEX DEFORMATIONS OF KAHLER-RICCI SOLITONS
    Pali, Nefton
    KODAI MATHEMATICAL JOURNAL, 2018, 41 (01) : 201 - 226
  • [7] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [8] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    ADVANCES IN MATHEMATICS, 2019, 357
  • [9] Fano Manifolds with Weak almost Kahler-Ricci Solitons
    Wang, Feng
    Zhu, Xiaohua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) : 2437 - 2464
  • [10] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094