THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS

被引:11
|
作者
Bonnard, Bernard [1 ]
Shcherbakova, Nataliya [1 ]
Sugny, Dominique [2 ]
机构
[1] Inst Math Bourgogne, UMR CNRS 5584, F-21078 Dijon, France
[2] Inst Carnot Bourgogne, UMR CNRS 5209, F-21078 Dijon, France
关键词
Optimal control; smooth continuation method; quantum control; TIME; TRAJECTORIES;
D O I
10.1051/cocv/2010004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system is depending upon three physical parameters, which can be used as homotopy parameters, and the time-minimizing trajectory for a prescribed couple of extremities can be analyzed by making a deformation of the Grushin metric on a two-sphere of revolution.
引用
收藏
页码:267 / 292
页数:26
相关论文
共 50 条
  • [21] GEOMETRIC OPTIMAL CONTROL OF SIMPLE QUANTUM SYSTEMS
    Sugny, Dominique
    ADVANCES IN CHEMICAL PHYSICS, VOL 147, 2012, 147 : 127 - 212
  • [22] Quantum fluctuation in affine optimal control systems
    Itami, Teturo
    ELECTRICAL ENGINEERING IN JAPAN, 2007, 161 (04) : 29 - 37
  • [23] Optimal control of complex atomic quantum systems
    van Frank, S.
    Bonneau, M.
    Schmiedmayer, J.
    Hild, S.
    Gross, C.
    Cheneau, M.
    Bloch, I.
    Pichler, T.
    Negretti, A.
    Calarco, T.
    Montangero, S.
    SCIENTIFIC REPORTS, 2016, 6
  • [24] Iterative algorithms for optimal control of quantum systems
    Grivopoulos, S
    Bamieh, B
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2687 - 2691
  • [25] Optimal control of complex atomic quantum systems
    S. van Frank
    M. Bonneau
    J. Schmiedmayer
    S. Hild
    C. Gross
    M. Cheneau
    I. Bloch
    T. Pichler
    A. Negretti
    T. Calarco
    S. Montangero
    Scientific Reports, 6
  • [26] Optimal thermodynamic control in open quantum systems
    Cavina, Vasco
    Mari, Andrea
    Carlini, Alberto
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [27] Robust and optimal control of open quantum systems
    Chen, Zi-Jie
    Huang, Hongwei
    Sun, Lida
    Jie, Qing-Xuan
    Zhou, Jie
    Hua, Ziyue
    Xu, Yifang
    Wang, Weiting
    Guo, Guang-Can
    Zou, Chang-Ling
    Sun, Luyan
    Zou, Xu-Bo
    SCIENCE ADVANCES, 2025, 11 (09):
  • [28] Quantum optimal control theory for solvated systems
    Rosa, Marta
    Gil, Gabriel
    Corni, Stefano
    Cammi, Roberto
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (19):
  • [29] Optimal control of quantum systems: a projection approach
    Cheng, CJ
    Hwang, CC
    Liao, TL
    Chou, GL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04): : 929 - 942
  • [30] Optimal Lyapunov-based quantum control for quantum systems
    Hou, S. C.
    Khan, M. A.
    Yi, X. X.
    Dong, Daoyi
    Petersen, Ian R.
    PHYSICAL REVIEW A, 2012, 86 (02):