Quantum optimal control theory for solvated systems

被引:8
|
作者
Rosa, Marta [1 ]
Gil, Gabriel [1 ,2 ]
Corni, Stefano [1 ,3 ]
Cammi, Roberto [4 ]
机构
[1] Univ Padua, Dipartimento Sci Chim, Padua, Italy
[2] Inst Cibernet Matemat & Fis, Havana, Cuba
[3] CNR NANO Ist Nanosci, Modena, Italy
[4] Univ Parma, Dipartimento Sci Chim Vita & Sostenibilita Ambien, Parma, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 151卷 / 19期
基金
欧盟地平线“2020”;
关键词
POLARIZABLE CONTINUUM MODEL; MOLECULES; DYNAMICS; SELECTIVITY; EXCITATION; CHARGES; MOTION; FIELD;
D O I
10.1063/1.5125184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we generalize the quantum optimal control theory (QOCT) of molecules subject to ultrashort laser pulses to the case of solvated systems, explicitly including the solvent dielectric properties in the system's quantum Hamiltonian. A reliable description of the solvent polarization is accounted for within the polarizable continuum model (PCM). The electron dynamics for the molecules in solution is coupled with the dynamics of the surrounding polarizable environment, which affects the features of the optimized laser pulse. To illustrate such effects, numerical applications of the developed method to the study of optimal population of selected excited states of two molecular solvated systems are presented and discussed. Published under license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Control of the quantum systems and some ideas of the optimal control theory
    V. F. Krotov
    [J]. Automation and Remote Control, 2009, 70 : 357 - 365
  • [2] Control of the quantum systems and some ideas of the optimal control theory
    Krotov, V. F.
    [J]. AUTOMATION AND REMOTE CONTROL, 2009, 70 (03) : 357 - 365
  • [3] Optimal Quantum Control Theory
    James, M. R.
    [J]. ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 343 - 367
  • [4] Quantum optimal control theory
    Werschnik, J.
    Gross, E. K. U.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (18) : R175 - R211
  • [5] Theory for the optimal control of time-averaged quantities in quantum systems
    Grigorenko, I
    Garcia, ME
    Bennemann, KH
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (23) : 233003/1 - 233003/4
  • [6] Applying optimal control theory for elements of quantum computation in molecular systems
    Tesch, CM
    Kurtz, L
    de Vivie-Riedle, R
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 343 (5-6) : 633 - 641
  • [7] Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field
    Lapert, M.
    Tehini, R.
    Turinici, G.
    Sugny, D.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [8] THEORY OF OPTIMAL CONTROL SYSTEMS
    KRASOVSK.NN
    MOISEYEV, NN
    [J]. ENGINEERING CYBERNETICS, 1967, (05): : 8 - &
  • [9] Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field
    Lapert, M.
    Tehini, R.
    Turinici, G.
    Sugny, D.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [10] Optimal control in disordered quantum systems
    Coopmans, Luuk
    Campbell, Steve
    De Chiara, Gabriele
    Kiely, Anthony
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (04):