Quantum optimal control theory for solvated systems

被引:8
|
作者
Rosa, Marta [1 ]
Gil, Gabriel [1 ,2 ]
Corni, Stefano [1 ,3 ]
Cammi, Roberto [4 ]
机构
[1] Univ Padua, Dipartimento Sci Chim, Padua, Italy
[2] Inst Cibernet Matemat & Fis, Havana, Cuba
[3] CNR NANO Ist Nanosci, Modena, Italy
[4] Univ Parma, Dipartimento Sci Chim Vita & Sostenibilita Ambien, Parma, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 151卷 / 19期
基金
欧盟地平线“2020”;
关键词
POLARIZABLE CONTINUUM MODEL; MOLECULES; DYNAMICS; SELECTIVITY; EXCITATION; CHARGES; MOTION; FIELD;
D O I
10.1063/1.5125184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we generalize the quantum optimal control theory (QOCT) of molecules subject to ultrashort laser pulses to the case of solvated systems, explicitly including the solvent dielectric properties in the system's quantum Hamiltonian. A reliable description of the solvent polarization is accounted for within the polarizable continuum model (PCM). The electron dynamics for the molecules in solution is coupled with the dynamics of the surrounding polarizable environment, which affects the features of the optimized laser pulse. To illustrate such effects, numerical applications of the developed method to the study of optimal population of selected excited states of two molecular solvated systems are presented and discussed. Published under license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal control of complex atomic quantum systems
    S. van Frank
    M. Bonneau
    J. Schmiedmayer
    S. Hild
    C. Gross
    M. Cheneau
    I. Bloch
    T. Pichler
    A. Negretti
    T. Calarco
    S. Montangero
    [J]. Scientific Reports, 6
  • [22] Optimal thermodynamic control in open quantum systems
    Cavina, Vasco
    Mari, Andrea
    Carlini, Alberto
    Giovannetti, Vittorio
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [23] Robust and optimal control of open quantum systems
    Chen, Zi-Jie
    Huang, Hongwei
    Sun, Lida
    Jie, Qing-Xuan
    Zhou, Jie
    Hua, Ziyue
    Xu, Yifang
    Wang, Weiting
    Guo, Guang-Can
    Zou, Chang-Ling
    Sun, Luyan
    Zou, Xu-Bo
    [J]. Science Advances, 2025, 11 (09)
  • [24] Optimal control of quantum systems: a projection approach
    Cheng, CJ
    Hwang, CC
    Liao, TL
    Chou, GL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04): : 929 - 942
  • [25] Optimal Lyapunov-based quantum control for quantum systems
    Hou, S. C.
    Khan, M. A.
    Yi, X. X.
    Dong, Daoyi
    Petersen, Ian R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [26] Optimal Control for Open Quantum Systems: Qubits and Quantum Gates
    Roloff, R.
    Wenin, M.
    Poetz, W.
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (08) : 1837 - 1863
  • [27] Optimal Quantum Control: Designing lasers for controlling quantum systems
    Rai, Renuka
    [J]. 2014 RECENT ADVANCES IN ENGINEERING AND COMPUTATIONAL SCIENCES (RAECS), 2014,
  • [28] Optimal control of linear Gaussian quantum systems via quantum learning control
    Liu, Yu-Hong
    Zeng, Yexiong
    Tan, Qing-Shou
    Dong, Daoyi
    Nori, Franco
    Liao, Jie-Qiao
    [J]. PHYSICAL REVIEW A, 2024, 109 (06)
  • [29] Quantum optimal control theory in the linear response formalism
    Castro, Alberto
    Tokatly, I. V.
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [30] Use of ADAR Method and Theory of Optimal Control for Engineering Systems Optimal Control
    Kolesnikov, A. A.
    Kuzmenko, A. A.
    [J]. 2020 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2020,