An empirical likelihood approach to quantile regression with auxiliary information

被引:14
|
作者
Tang, Cheng Yong [1 ]
Leng, Chenlei [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117548, Singapore
关键词
Auxiliary information; Empirical likelihood; Estimating equations; Quantile regression; CONFIDENCE-INTERVALS; LINEAR-REGRESSION; INFERENCE; ESTIMATORS; MODELS;
D O I
10.1016/j.spl.2011.09.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider how to incorporate auxiliary information to improve quantile regression via empirical likelihood. We propose a novel framework and show that our approach yields more efficient estimates compared to those from the conventional quantile regression. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [21] Quantile regression and its empirical likelihood with missing response at random
    Shen, Yu
    Liang, Han-Ying
    [J]. STATISTICAL PAPERS, 2018, 59 (02) : 685 - 707
  • [22] Weighted quantile regression for longitudinal data using empirical likelihood
    YUAN XiaoHui
    LIN Nan
    DONG XiaoGang
    LIU TianQing
    [J]. Science China Mathematics, 2017, 60 (01) : 147 - 164
  • [23] Empirical likelihood change point detection in quantile regression models
    Ratnasingam, Suthakaran
    Gamage, Ramadha D. Piyadi
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [24] Weighted quantile regression for longitudinal data using empirical likelihood
    XiaoHui Yuan
    Nan Lin
    XiaoGang Dong
    TianQing Liu
    [J]. Science China Mathematics, 2017, 60 : 147 - 164
  • [25] An empirical likelihood method for quantile regression models with censored data
    Qibing Gao
    Xiuqing Zhou
    Yanqin Feng
    Xiuli Du
    XiaoXiao Liu
    [J]. Metrika, 2021, 84 : 75 - 96
  • [26] An empirical likelihood method for quantile regression models with censored data
    Gao, Qibing
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    Liu, XiaoXiao
    [J]. METRIKA, 2021, 84 (01) : 75 - 96
  • [27] Quantile regression and its empirical likelihood with missing response at random
    Yu Shen
    Han-Ying Liang
    [J]. Statistical Papers, 2018, 59 : 685 - 707
  • [28] Small area quantile estimation via spline regression and empirical likelihood
    Chen, Zhanshou
    Chen, Jiahua
    Zhang, Qiong
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 81 - 99
  • [29] Empirical likelihood for quantile regression models with response data missing at random
    Luo, S.
    Pang, Shuxia
    [J]. OPEN MATHEMATICS, 2017, 15 : 317 - 330
  • [30] Empirical likelihood in varying-coefficient quantile regression with missing observations
    Wang, Bao-Hua
    Liang, Han-Ying
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 267 - 283