A Bayesian-based approach for extracting the pion charge radius from electron-electron scattering data

被引:2
|
作者
Hidayat, Alam A. [1 ]
Pardamean, Bens [1 ,2 ]
机构
[1] Bina Nusantara Univ, Bioinformat & Data Sci Res Ctr, Jakarta 11480, Indonesia
[2] Bina Nusantara Univ, Master Comp Sci, BINUS Grad Program, Comp Sci Dept, Jakarta 11480, Indonesia
关键词
Bayesian; complexity; dispersion; hadron; pion; MODEL SELECTION; CROSS-SECTION; FORM-FACTOR; INFERENCE; E(+)E(-);
D O I
10.1088/1674-1137/ac032f
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this study, we utilize a potentially versatile Bayesian parameter approach to compute the value of the pion charge radius and quantify its uncertainty from several experimental e(+)e(-) datasets for the pion vector form factor. We employ dispersion relations to model the pion vector form factor to extract the radius. Nested model selection is used to determine the order of polynomial appearing in the form factor formulation that can be supported by the data, adapting the computation of Bayes evidence and Bayesian effective complexity based on Occam's razor. Our findings indicate that five out of six used datasets favor the nine-parameter model for radius extraction, and accordingly, we average the radii from the datasets. Despite some inconsistencies with the most updated radius values, our approach may serve as a more intuitive method of addressing parameter estimations in dispersion theory.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A small proton charge radius from an electron-proton scattering experiment
    Xiong, W.
    Gasparian, A.
    Gao, H.
    Dutta, D.
    Khandaker, M.
    Liyanage, N.
    Pasyuk, E.
    Peng, C.
    Bai, X.
    Ye, L.
    Gnanvo, K.
    Gu, C.
    Levillain, M.
    Yan, X.
    Higinbotham, D. W.
    Meziane, M.
    Ye, Z.
    Adhikari, K.
    Aljawrneh, B.
    Bhatt, H.
    Bhetuwal, D.
    Brock, J.
    Burkert, V.
    Carlin, C.
    Deur, A.
    Di, D.
    Dunne, J.
    Ekanayaka, P.
    El-Fassi, L.
    Emmich, B.
    Gan, L.
    Glamazdin, O.
    Kabir, M. L.
    Karki, A.
    Keith, C.
    Kowalski, S.
    Lagerquist, V.
    Larin, I.
    Liu, T.
    Liyanage, A.
    Maxwell, J.
    Meekins, D.
    Nazeer, S. J.
    Nelyubin, V.
    Nguyen, H.
    Pedroni, R.
    Perdrisat, C.
    Pierce, J.
    Punjabi, V.
    Shabestari, M.
    NATURE, 2019, 575 (7781) : 147 - +
  • [22] Model-independent extraction of the proton charge radius from electron scattering
    Hill, Richard J.
    Paz, Gil
    PHYSICAL REVIEW D, 2010, 82 (11):
  • [23] Silicon Electron Nano-Aspirator - Current enhancement based on electron-electron scattering
    Ono, Yukinori
    2023 SILICON NANOELECTRONICS WORKSHOP, SNW, 2023, : 85 - 86
  • [24] Conditions for T2 resistivity from electron-electron scattering
    Swift, Michael W.
    Van de Walle, Chris G.
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (08):
  • [25] Conditions for T2 resistivity from electron-electron scattering
    Michael W. Swift
    Chris G. Van de Walle
    The European Physical Journal B, 2017, 90
  • [26] OBSERVATION OF ELECTRON-ELECTRON SCATTERING IN ELECTRON-CAPTURE BY FAST PROTONS FROM HE
    PALINKAS, J
    SCHUCH, R
    CEDERQUIST, H
    GUSTAFSSON, O
    PHYSICAL REVIEW LETTERS, 1989, 63 (22) : 2464 - 2467
  • [27] Extraction of the proton radius from electron-proton scattering data
    Lee, Gabriel
    Arrington, John R.
    Hill, Richard J.
    PHYSICAL REVIEW D, 2015, 92 (01):
  • [28] Precise determination of the proton magnetic radius from electron scattering data
    Alarcon, J. M.
    Higinbotham, D. W.
    Weiss, C.
    PHYSICAL REVIEW C, 2020, 102 (03)
  • [29] Precision Measurement of the Proton Charge Radius in Electron Proton Scattering
    A. A. Vorobyev
    Physics of Particles and Nuclei Letters, 2019, 16 : 524 - 529
  • [30] Precision Measurement of the Proton Charge Radius in Electron Proton Scattering
    Vorobyev, A. A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2019, 16 (05) : 524 - 529