On the chromatic number of graphs

被引:0
|
作者
Butenko, S [1 ]
Festa, P
Pardalos, PM
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Univ Salerno, Dept Math & Comp Sci, I-84100 Salerno, Italy
[3] Univ Florida, Ctr Appl Optimizat, Dept Ind & Syst Engn, Gainesville, FL USA
关键词
graph coloring problems; combination optimization; integer programming; test problems;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Computing the chromatic number of a graph is an NP-hard problem. For random graphs and some other classes of graphs, estimators of the expected chromatic number have been well studied. In this paper, a new 0-1 integer programming formulation for the graph coloring problem is presented. The proposed new formulation is used to develop a method that generates graphs of known chromatic number by using the KKT optimality conditions of a related continuous nonlinear program.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [31] On the chromatic number of circulant graphs
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5687 - 5696
  • [32] On Group Chromatic Number of Graphs
    Hong-Jian Lai
    Xiangwen Li
    Graphs and Combinatorics, 2005, 21 : 469 - 474
  • [33] On the adaptable chromatic number of graphs
    Hell, Pavol
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 912 - 921
  • [34] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [35] Chromatic Number and Orientations of Graphs and Signed Graphs
    Qi, Hao
    Wong, Tsai-Lien
    Zhu, Xuding
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 767 - 776
  • [36] ON GRAPHS WITH MAXIMUM DIFFERENCE BETWEEN GAME CHROMATIC NUMBER AND CHROMATIC NUMBER
    Hollom, Lawrence
    arXiv, 2023,
  • [37] SUBGRAPHS OF LARGE CONNECTIVITY AND CHROMATIC NUMBER IN GRAPHS OF LARGE CHROMATIC NUMBER
    ALON, N
    KLEITMAN, D
    THOMASSEN, C
    SAKS, M
    SEYMOUR, P
    JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 367 - 371
  • [38] STABILITY NUMBER AND CHROMATIC NUMBER OF TOLERANCE GRAPHS
    NARASIMHAN, G
    MANBER, R
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) : 47 - 56
  • [39] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [40] CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS
    刘红美
    Acta Mathematica Scientia, 2006, (02) : 314 - 320