Computational approaches to predict protein functional families and functional sites

被引:14
|
作者
Rauer, Clemens [1 ]
Sen, Neeladri [1 ]
Waman, P. Vaishali [1 ]
Abbasian, Mahnaz [1 ]
Orengo, A. Christine [1 ]
机构
[1] UCL, Inst Struct & Mol Biol, London WC1E 6BT, England
基金
英国生物技术与生命科学研究理事会;
关键词
WEB-SERVER; RESIDUES; CLASSIFICATION; SEQUENCE; SUPERFAMILIES; EVOLUTION; DATABASE; REGIONS;
D O I
10.1016/j.sbi.2021.05.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the mechanisms of protein function is indispensable for many biological applications, such as protein engineering and drug design. However, experimental annotations are sparse, and therefore, theoretical strategies are needed to fill the gap. Here, we present the latest developments in building functional subclassifications of protein superfamilies and using evolutionary conservation to detect functional determinants, for example, catalytic-, binding- and specificity-determining residues important for delineating the functional families. We also briefly review other features exploited for functional site detection and new machine learning strategies for combining multiple features.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 50 条
  • [41] Rsite: a computational method to identify the functional sites of noncoding RNAs
    Zeng, Pan
    Li, Jianwei
    Ma, Wei
    Cui, Qinghua
    SCIENTIFIC REPORTS, 2015, 5
  • [42] Rsite: a computational method to identify the functional sites of noncoding RNAs
    Pan Zeng
    Jianwei Li
    Wei Ma
    Qinghua Cui
    Scientific Reports, 5
  • [43] Functional Analysis of Protein Targets by Metabolomic Approaches
    Kim, Yun-Gon
    Saghatelian, Alan
    ACTIVITY-BASED PROTEIN PROFILING, 2012, 324 : 137 - 162
  • [44] STRUCTURAL AND FUNCTIONAL APPROACHES TO THE STUDY OF PROTEIN ANTIGENICITY
    VANREGENMORTEL, MHV
    IMMUNOLOGY TODAY, 1989, 10 (08): : 266 - 272
  • [45] LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains
    Helft, Laura
    Reddy, Vignyan
    Chen, Xiyang
    Koller, Teresa
    Federici, Luca
    Fernandez-Recio, Juan
    Gupta, Rishabh
    Bent, Andrew
    PLOS ONE, 2011, 6 (07):
  • [46] A computational framework for modeling functional protein-protein interactions
    Pal, Abantika
    Pal, Debnath
    Mitra, Pralay
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (10) : 1353 - 1364
  • [47] Computational approaches to identify functional genetic variants in cancer genomes
    Gonzalez-Perez, Abel
    Mustonen, Ville
    Reva, Boris
    Ritchie, Graham R. S.
    Creixell, Pau
    Karchin, Rachel
    Vazquez, Miguel
    Fink, J. Lynn
    Kassahn, Karin S.
    Pearson, John V.
    Bader, Gary D.
    Boutros, Paul C.
    Muthuswamy, Lakshmi
    Ouellette, B. F. Francis
    Reimand, Jueri
    Linding, Rune
    Shibata, Tatsuhiro
    Valencia, Alfonso
    Butler, Adam
    Dronov, Serge
    Flicek, Paul
    Shannon, Nick B.
    Carter, Hannah
    Ding, Li
    Sander, Chris
    Stuart, Josh M.
    Stein, Lincoln D.
    Lopez-Bigas, Nuria
    NATURE METHODS, 2013, 10 (08) : 723 - 729
  • [48] Functional, Structural, and Computational Approaches to the Molecular Mechanism of Vdac Gating
    Hermida, Oscar Teijido
    Noskov, Sergei Yu
    Ujwal, Rachna
    Abramson, Jeff
    Eddy, Matthew T.
    Griffin, Robert G.
    Bezrukov, Sergey M.
    Rostovtseva, Tatiana K.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 590A - 590A
  • [49] Functional and computational approaches to uncover selection advantages of cancer aneuploidy
    Taylor, Alison Marie
    CANCER RESEARCH, 2022, 82 (12)