Rsite: a computational method to identify the functional sites of noncoding RNAs

被引:25
|
作者
Zeng, Pan [1 ]
Li, Jianwei [2 ]
Ma, Wei [1 ]
Cui, Qinghua [1 ]
机构
[1] Peking Univ, Sch Basic Med Sci, MOE Key Lab Cardiovasc Sci, Dept Biomed Informat, Beijing 100191, Peoples R China
[2] Hebei Univ Technol, Sch Comp Sci & Engn, Lab Translat Biomed Informat, Tianjin 300401, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
STRUCTURAL-ANALYSIS; LONG; RESIDUES; DATABASE;
D O I
10.1038/srep09179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is an increasing demand for identifying the functional sites of noncoding RNAs (ncRNAs). Here we introduce a tertiary-structure based computational approach, Rsite, which first calculates the Euclidean distances between each nucleotide and all the other nucleotides in a RNA molecule and then determines the nucleotides that are the extreme points in the distance curve as the functional sites. By analyzing two ncRNAs, tRNA (Lys) and Diels-Alder ribozyme, we demonstrated the efficiency of Rsite. As a result, Rsite recognized all of the known functional sites of the two ncRNAs, suggesting that Rsite could be a potentially useful tool for discovering the functional sites of ncRNAs. The source codes and data sets of Rsite are available at http://www.cuilab.cn/rsite.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Rsite: a computational method to identify the functional sites of noncoding RNAs
    Pan Zeng
    Jianwei Li
    Wei Ma
    Qinghua Cui
    Scientific Reports, 5
  • [2] Rsite2: an efficient computational method to predict the functional sites of noncoding RNAs
    Zeng, Pan
    Cui, Qinghua
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Rsite2: an efficient computational method to predict the functional sites of noncoding RNAs
    Pan Zeng
    Qinghua Cui
    Scientific Reports, 6
  • [4] Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs
    Signal, Bethany
    Gloss, Brian S.
    Dinger, Marcel E.
    TRENDS IN GENETICS, 2016, 32 (10) : 620 - 637
  • [5] Computational analysis of noncoding RNAs
    Washietl, Stefan
    Will, Sebastian
    Hendrix, David A.
    Goff, Loyal A.
    Rinn, John L.
    Berger, Bonnie
    Kellis, Manolis
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2012, 3 (06) : 759 - 778
  • [6] A computational approach to identify genes for functional RNAs in genomic sequences
    Carter, RJ
    Dubchak, I
    Holbrook, SR
    NUCLEIC ACIDS RESEARCH, 2001, 29 (19) : 3928 - 3938
  • [7] Computational identification and analysis of noncoding RNAs
    Yoon, Byung-Jun
    Vaidyanathan, P. P.
    IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (01) : 64 - 74
  • [8] Noncoding RNAs: A New Layer of Functional RNAs
    Gurer, Dilek Cansu
    Akgul, Bunyamin
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2023, 24 (07) : 856 - 871
  • [9] CRISPRi proliferation and differentiation screening to identify functional long noncoding RNAs in pediatric AML
    Winkler, R.
    Heckl, D.
    Bhayadia, R.
    Klusmann, J-H
    KLINISCHE PADIATRIE, 2022, 234 (03): : 190 - 190
  • [10] Crispri/A Screening to Identify Functional Long Noncoding RNAS in Pediatric Acute Myeloid Leukemia
    Ng, M.
    Santer, L.
    Emmrich, S.
    Schwarzer, A.
    Heckl, D.
    Klusmann, J. H.
    ANNALS OF HEMATOLOGY, 2017, 96 : S78 - S78