Rsite: a computational method to identify the functional sites of noncoding RNAs

被引:25
|
作者
Zeng, Pan [1 ]
Li, Jianwei [2 ]
Ma, Wei [1 ]
Cui, Qinghua [1 ]
机构
[1] Peking Univ, Sch Basic Med Sci, MOE Key Lab Cardiovasc Sci, Dept Biomed Informat, Beijing 100191, Peoples R China
[2] Hebei Univ Technol, Sch Comp Sci & Engn, Lab Translat Biomed Informat, Tianjin 300401, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
STRUCTURAL-ANALYSIS; LONG; RESIDUES; DATABASE;
D O I
10.1038/srep09179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is an increasing demand for identifying the functional sites of noncoding RNAs (ncRNAs). Here we introduce a tertiary-structure based computational approach, Rsite, which first calculates the Euclidean distances between each nucleotide and all the other nucleotides in a RNA molecule and then determines the nucleotides that are the extreme points in the distance curve as the functional sites. By analyzing two ncRNAs, tRNA (Lys) and Diels-Alder ribozyme, we demonstrated the efficiency of Rsite. As a result, Rsite recognized all of the known functional sites of the two ncRNAs, suggesting that Rsite could be a potentially useful tool for discovering the functional sites of ncRNAs. The source codes and data sets of Rsite are available at http://www.cuilab.cn/rsite.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] lncFunTK: a toolkit for functional annotation of long noncoding RNAs
    Zhou, Jiajian
    Huang, Yile
    Ding, Yingzhe
    Yuan, Jie
    Wang, Huating
    Sun, Hao
    BIOINFORMATICS, 2018, 34 (19) : 3415 - 3416
  • [32] An accurate, sensitive, and scalable method to identify functional sites in protein structures
    Yao, H
    Kristensen, DM
    Mihalek, I
    Sowa, ME
    Shaw, C
    Kimmel, M
    Kavraki, L
    Lichtarge, O
    JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (01) : 255 - 261
  • [33] Current Computational Models for Prediction of the Varied Interactions Related to Noncoding RNAs
    Chen, Xing
    Peng, Huiming
    Yin, Zheng
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [34] A comprehensive checklist of computational resources and methodologies for noncoding RNAs in systems medicine
    Li, Ruijiang
    Zhao, Caiyun
    Wang, Ruiqi
    Wang, Jing
    Jin, Yiguang
    He, Song
    Bo, Xiaochen
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2024, 15 (01)
  • [35] Computational identification of noncoding RNAs in E-coli by comparative genomics
    Rivas, E
    Klein, RJ
    Jones, TA
    Eddy, SR
    CURRENT BIOLOGY, 2001, 11 (17) : 1369 - 1373
  • [36] Detection of RNA-DNA binding sites in long noncoding RNAs
    Kuo, Chao-Chung
    Haenzelmann, Sonja
    Cetin, Nevcin Sentuerk
    Frank, Stefan
    Zajzon, Barna
    Derks, Jens-Peter
    Akhade, Vijay Suresh
    Ahuja, Gaurav
    Kanduri, Chandrasekhar
    Grummt, Ingrid
    Kurian, Leo
    Costa, Ivan G.
    NUCLEIC ACIDS RESEARCH, 2019, 47 (06)
  • [37] Bioinformatics analysis to identify the critical genes, microRNAs and long noncoding RNAs in melanoma
    Zhang, Qian
    Wang, Yang
    Liang, Jiulong
    Tian, Yaguang
    Zhang, Yu
    Tao, Kai
    MEDICINE, 2017, 96 (29)
  • [38] Noncoding RNAs and their functional involvement in regulation of chronic myeloid leukemia
    Wang, Xuefei
    Chen, Ke
    Guo, Guijie
    Chen, Ji-Long
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2016, 15 (03) : 239 - 248
  • [39] Noncoding RNAs: functional regulatory factors in tomato fruit ripening
    Ma, Lili
    Mu, Jianlou
    Grierson, Donald
    Wang, Yunxiang
    Gao, Lipu
    Zhao, Xiaoyan
    Zhu, Benzhong
    Luo, Yunbo
    Shi, Kai
    Wang, Qing
    Zuo, Jinhua
    THEORETICAL AND APPLIED GENETICS, 2020, 133 (05) : 1753 - 1762
  • [40] Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs
    Niazi, Farshad
    Valadkhan, Saba
    RNA, 2012, 18 (04) : 825 - 843