机构:
Brown Univ, Providence, RI 02912 USABrown Univ, Providence, RI 02912 USA
de Clippel, Geoffroy
[1
]
Zhang, Xu
论文数: 0|引用数: 0|
h-index: 0|
机构:
Hong Kong Univ Sci & Technol Guangzhou, Guangzhou, Peoples R China
Hong Kong Univ Sci & Technol, Hong Kong, Peoples R ChinaBrown Univ, Providence, RI 02912 USA
Zhang, Xu
[2
,3
]
机构:
[1] Brown Univ, Providence, RI 02912 USA
[2] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou, Peoples R China
[3] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
Following Kamenica and Gentzkow, this paper studies persuasion as an information design problem. We investigate how mistakes in probabilistic inference impact optimal persuasion. The concavification method is shown to extend naturally to a large class of belief updating rules, which we identify and characterize. This class comprises many non-Bayesian models discussed in the literature. We apply this new technique to gain insight into the revelation principle, the ranking of updating rules, when persuasion is beneficial to the sender, and when it is detrimental to the receiver. Our key result also extends to shed light on the question of robust persuasion.
机构:
CCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USACCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USA
Hare, James Z.
Uribe, Cesar A.
论文数: 0|引用数: 0|
h-index: 0|
机构:
MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
MIT, Inst Data Syst & Soc, Cambridge, MA 02139 USACCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USA
Uribe, Cesar A.
Kaplan, Lance
论文数: 0|引用数: 0|
h-index: 0|
机构:
CCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USACCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USA
Kaplan, Lance
Jadbabaie, Ali
论文数: 0|引用数: 0|
h-index: 0|
机构:
MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
MIT, Inst Data Syst & Soc, Cambridge, MA 02139 USACCDC Army Res Lab, Signal & Informat Proc Div, Adelphi, MD 20783 USA