Packing d-degenerate graphs

被引:10
|
作者
Bollobas, Bela [1 ,2 ]
Kostochka, Alexandr [3 ,4 ]
Nakprasit, Kittikorn [3 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ Illinois, Urbana, IL 61801 USA
[4] Inst Math, Novosibirsk 630090, Russia
基金
美国国家科学基金会;
关键词
graph packing; d-degenerate graphs; maximum degree;
D O I
10.1016/j.jctb.2007.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study packings of graphs with given maximal degree. We shall prove that the (hitherto unproved) Bollobas-Eldridge-Catlin Conjecture holds in a considerably stronger form if one of the graphs is d-degenerate for d not too large: if d, Delta(1), Delta(2) >= 1 and n > max(40 Delta(1) 1n Delta(2), 40d Delta(2)) then a d-degenerate graph of maximal degree Delta(1) and a graph of order n and maximal degree Delta(2) pack. We use this result to show that, for d fixed and n large enough, one can pack n/1500d(2) arbitrary d-degenerate n-vertex graphs of maximal degree at most n/1000d 1n n. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 50 条
  • [1] Equitable d-degenerate Choosability of Graphs
    Drgas-Burchardt, Ewa
    Furmanczyk, Hanna
    Sidorowicz, Elzbieta
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 251 - 263
  • [2] Equitable colourings of d-degenerate graphs
    Kostochka, AV
    Nakprasit, K
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 53 - 60
  • [3] On equitable coloring of d-degenerate graphs
    Kostochka, AV
    Nakprasit, K
    Pemmaraju, SV
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) : 83 - 95
  • [4] Local antimagic orientations of d-degenerate graphs
    Hu, Jie
    Ouyang, Qiancheng
    Wang, Guanghui
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 206 - 215
  • [5] Kernelization hardness of connectivity problems in d-degenerate graphs
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2131 - 2141
  • [6] Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 147 - 158
  • [7] First-fit chromatic numbers of d-degenerate graphs
    Chang, Gerard Jennhwa
    Hsu, Hsiang-Chun
    DISCRETE MATHEMATICS, 2012, 312 (12-13) : 2088 - 2090
  • [8] Neighbor Sum (Set) Distinguishing Total Choosability of d-Degenerate Graphs
    Yao, Jingjing
    Yu, Xiaowei
    Wang, Guanghui
    Xu, Changqing
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1611 - 1620
  • [9] Neighbor Sum (Set) Distinguishing Total Choosability of d-Degenerate Graphs
    Jingjing Yao
    Xiaowei Yu
    Guanghui Wang
    Changqing Xu
    Graphs and Combinatorics, 2016, 32 : 1611 - 1620
  • [10] Packing degenerate graphs
    Allen, Peter
    Bottcher, Julia
    Hladky, Jan
    Piguet, Diana
    ADVANCES IN MATHEMATICS, 2019, 354