Packing d-degenerate graphs

被引:10
|
作者
Bollobas, Bela [1 ,2 ]
Kostochka, Alexandr [3 ,4 ]
Nakprasit, Kittikorn [3 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ Illinois, Urbana, IL 61801 USA
[4] Inst Math, Novosibirsk 630090, Russia
基金
美国国家科学基金会;
关键词
graph packing; d-degenerate graphs; maximum degree;
D O I
10.1016/j.jctb.2007.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study packings of graphs with given maximal degree. We shall prove that the (hitherto unproved) Bollobas-Eldridge-Catlin Conjecture holds in a considerably stronger form if one of the graphs is d-degenerate for d not too large: if d, Delta(1), Delta(2) >= 1 and n > max(40 Delta(1) 1n Delta(2), 40d Delta(2)) then a d-degenerate graph of maximal degree Delta(1) and a graph of order n and maximal degree Delta(2) pack. We use this result to show that, for d fixed and n large enough, one can pack n/1500d(2) arbitrary d-degenerate n-vertex graphs of maximal degree at most n/1000d 1n n. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 50 条
  • [41] KAPPA-DEGENERATE GRAPHS
    LICK, DR
    WHITE, AT
    CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (05): : 1082 - &
  • [42] Linear arboricity of degenerate graphs
    Chen, Guantao
    Hao, Yanli
    Yu, Guoning
    JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 360 - 371
  • [43] PACKING PATHS IN PLANAR GRAPHS
    FRANK, A
    COMBINATORICA, 1990, 10 (04) : 325 - 331
  • [44] Packing cycles in complete graphs
    Bryant, Darryn
    Horsley, Daniel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 1014 - 1037
  • [45] PACKING CONSTANTS IN GRAPHS AND CONNECTIVITY
    BRASS, P
    DISCRETE MATHEMATICS, 1995, 137 (1-3) : 353 - 355
  • [46] On star family packing of graphs
    Li, Mengya
    Lin, Wensong
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (04) : 2129 - 2140
  • [47] Packing cycles in undirected graphs
    Caprara, A
    Panconesi, A
    Rizzi, R
    JOURNAL OF ALGORITHMS, 2003, 48 (01) : 239 - 256
  • [48] ON PACKING AND COVERING NUMBERS OF GRAPHS
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1991, 96 (03) : 229 - 238
  • [49] The packing number of cubic graphs
    Goddard, Wayne
    Henning, Michael A.
    DISCRETE OPTIMIZATION, 2024, 53
  • [50] PACKING SMALLER GRAPHS INTO A GRAPH
    AKIYAMA, J
    NAKADA, F
    TOKUNAGA, S
    DISCRETE MATHEMATICS, 1989, 75 (1-3) : 7 - 9