First-fit chromatic numbers of d-degenerate graphs

被引:4
|
作者
Chang, Gerard Jennhwa [1 ,2 ,3 ]
Hsu, Hsiang-Chun [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[3] Taipei Off, Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
First-fit chromatic number; Grundy number; d-degenerate graph; OCHROMATIC NUMBERS; INDUCTIVE GRAPHS; GRUNDY; EQUALITY; ONLINE;
D O I
10.1016/j.disc.2012.03.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first-fit chromatic number of a graph is the number of colors needed in the worst case of a greedy coloring. In this short note, we first give counterexamples to some results by Balogh eta). (2008) [1], and then prove that every n-vertex d-degenerate graph has first-fit chromatic number at most log(d+1/d) n + 2. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2088 / 2090
页数:3
相关论文
共 50 条
  • [1] On the first-fit chromatic number of graphs
    Balogh, Jozsef
    Hartke, Stephen G.
    Liu, Qi
    Yu, Gexin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 887 - 900
  • [2] Inequalities for the First-Fit chromatic number
    Furedi, Zoltan
    Gyarfas, Andras
    Sarkozy, Gabor N.
    Selkow, Stanley
    [J]. JOURNAL OF GRAPH THEORY, 2008, 59 (01) : 75 - 88
  • [3] Packing d-degenerate graphs
    Bollobas, Bela
    Kostochka, Alexandr
    Nakprasit, Kittikorn
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (01) : 85 - 94
  • [4] FIRST-FIT COLORING OF INCOMPARABILITY GRAPHS
    Bosek, Bartlomiej
    Krawczyk, Tomasz
    Matecki, Grzegorz
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 126 - 140
  • [5] Equitable d-degenerate Choosability of Graphs
    Drgas-Burchardt, Ewa
    Furmanczyk, Hanna
    Sidorowicz, Elzbieta
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 251 - 263
  • [6] On equitable coloring of d-degenerate graphs
    Kostochka, AV
    Nakprasit, K
    Pemmaraju, SV
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) : 83 - 95
  • [7] Equitable colourings of d-degenerate graphs
    Kostochka, AV
    Nakprasit, K
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 53 - 60
  • [8] Local antimagic orientations of d-degenerate graphs
    Hu, Jie
    Ouyang, Qiancheng
    Wang, Guanghui
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 257 : 206 - 215
  • [9] A Note on First-Fit Coloring of Interval Graphs
    N. S. Narayanaswamy
    R. Subhash Babu
    [J]. Order, 2008, 25 : 49 - 53
  • [10] First-Fit coloring of bounded tolerance graphs
    Kierstead, H. A.
    Saoub, Karin R.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (07) : 605 - 611