THE GENERALIZED CONSTANTIN-LAX-MAJDA EQUATION REVISITED

被引:0
|
作者
Wunsch, Marcus [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto, Sakyoku Kitashi 6068502, Japan
关键词
The generalized Constantin-Lax-Majda equation; Beale-Kato-Majda blowup criterion; small solutions; ONE-DIMENSIONAL MODEL; VORTICITY; BMO;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue our study of the generalized Constantin-Lax-Majda equation, which is an evolution equation in one space dimension modeling three-dimensional vorticity dynamics. First, we show that the BMO-norm of the vorticity controls the singularity formation for smooth solutions if the parameter a equals 2, and we proceed by demonstrating that there are small solutions which exist indefinitely in the presence of viscosity if a <= -2.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 50 条
  • [41] A generalization of the Lax equation
    Przybylska, M
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (3-4) : 217 - 252
  • [42] The generalized DMPK equation revisited: towards a systematic derivation
    Douglas, Andrew
    Markos, Peter
    Muttalib, K. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (12)
  • [43] Lax integrability and exact solutions of the generalized (3+1) dimensional Ito equation
    Shen, Tuoping
    Bao, Taogetusang
    NONLINEAR DYNAMICS, 2023, 111 (19) : 18313 - 18330
  • [44] Lax pairs for one-dimensional nonlinear equation of evolution and generalized Miura transformation
    Rudykh, GA
    DOKLADY AKADEMII NAUK, 1998, 358 (06) : 749 - 751
  • [45] Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras
    Chengming Bai
    Li Guo
    Xiang Ni
    Communications in Mathematical Physics, 2010, 297 : 553 - 596
  • [46] Local oscillations in generalized lax-friedrichs schemes for linear advection equation with damping
    Wu, Y. (wuyun19821231@sohu.com), 1600, Advanced Institute of Convergence Information Technology, Myoungbo Bldg 3F,, Bumin-dong 1-ga, Seo-gu, Busan, 602-816, Korea, Republic of (07):
  • [47] Pseudopotentials, Lax Pairs and Backlund Transformations for Generalized Fifth-Order KdV Equation
    Yang Yun-Qing
    Chen Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (01) : 25 - 28
  • [48] Nonabelian Generalized Lax Pairs, the Classical Yang-Baxter Equation and PostLie Algebras
    Bai, Chengming
    Guo, Li
    Ni, Xiang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 553 - 596
  • [49] Lax integrability and exact solutions of the generalized (3+1) dimensional Ito equation
    Tuoping Shen
    Taogetusang Bao
    Nonlinear Dynamics, 2023, 111 : 18313 - 18330
  • [50] On generalized Lax equations of the Lax triple of the BKP and CKP hierarchies
    Xiao-Li Wang
    Jian-Qin Mei
    Min-Li Li
    Zhao-wen Yan
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 171 - 182