A generalization of the Lax equation

被引:3
|
作者
Przybylska, M [1 ]
机构
[1] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
关键词
Lax equation; integrability; Hamiltonian systems; R matrices; Skylyanin bracket; tensor invariants;
D O I
10.1016/S0393-0440(00)00065-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a generalization of the standard Lax equation defined by means of an arbitrary action of a Lie algebra on a matrix differential manifold. We analyze properties of obtained equation and show examples with physical applications. In particular, certain constructions of Hamiltonian subclasses of this generalized Lax equation are described. (C) 2001 Elsevier Science B.V. all rights reserved.
引用
收藏
页码:217 / 252
页数:36
相关论文
共 50 条
  • [1] On a generalization of the Constantin-Lax-Majda equation
    Okamoto, Hisashi
    Sakajo, Takashi
    Wunsch, Marcus
    NONLINEARITY, 2008, 21 (10) : 2447 - 2461
  • [2] A generalization of the Lax equation defined by an arbitrary anti-automorphism
    Przybylska, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (17): : 3155 - 3167
  • [3] A GENERALIZATION OF LAX EQUIVALENCE THEOREM
    SCHULTZ, MH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (05) : 1034 - &
  • [4] A generalization of the Beurling—Lax theorem
    B. V. Vinnitskii
    V. N. Dil’nyi
    Mathematical Notes, 2006, 79 : 335 - 341
  • [5] A generalization of the Beurling-Lax theorem
    Vinnitskii, BV
    Dil'nyi, VN
    MATHEMATICAL NOTES, 2006, 79 (3-4) : 335 - 341
  • [6] On generalized Lax equation of the Lax triple of KP Hierarchy
    Xiao-Li Wang
    Lu Yu
    Yan-Xin Yang
    Min-Ru Chen
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 194 - 203
  • [7] On generalized Lax equation of the Lax triple of mKP hierarchy
    Li, Chong
    Shi, Lin-Jie
    Wang, Xiao-Li
    Wang, Na
    Chen, Min-Ru
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (20):
  • [8] On generalized Lax equation of the Lax triple of KP Hierarchy
    Wang, Xiao-Li
    Yu, Lu
    Yang, Yan-Xin
    Chen, Min-Ru
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (02) : 194 - 203
  • [9] LAX EQUATION WITHOUT SYMMETRY
    FUJIMOTO, A
    LETTERE AL NUOVO CIMENTO, 1981, 31 (18): : 643 - 647
  • [10] Additive generalizations of the Lax equation
    Przybylska, M
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (03) : 425 - 440