Additive generalizations of the Lax equation

被引:0
|
作者
Przybylska, M [1 ]
机构
[1] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
关键词
Lax equation; dynamical systems; integrability;
D O I
10.1016/S0034-4877(01)80100-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider additive generalizations of matrix differential equations defined by particular representations of a Lie algebra. To the right-hand sides of such matrix differential equations we add appropriate terms chosen in such a way that it is possible to obtain important information about the dynamics without solving the equations. For example, we can write explicitly their first integrals and functions which are linear in time along solutions. Sometimes we can also predict the asymptotic behaviour of trajectories.
引用
收藏
页码:425 / 440
页数:16
相关论文
共 50 条
  • [1] LAX PAIRS FOR CERTAIN GENERALIZATIONS OF THE SINE-GORDON EQUATION
    EICHENHERR, H
    POHLMEYER, K
    PHYSICS LETTERS B, 1979, 89 (01) : 76 - 78
  • [2] The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2
    Mykytiuk, YV
    Plykarpatsky, AK
    Blackmore, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (05) : 629 - 640
  • [3] On the Lax solution to the Hamilton-Jacobi equation and its generalizations. Part II
    Prykarpatsky A.K.
    Blackmore D.L.
    Mykytyuk Y.V.
    Journal of Mathematical Sciences, 2001, 104 (5) : 1411 - 1421
  • [4] Generalizations of the Lax-Milgram theorem
    Drivaliaris, Dimosthenis
    Yannakakis, Nikos
    BOUNDARY VALUE PROBLEMS, 2007,
  • [5] Generalizations of the Lax-Milgram Theorem
    Dimosthenis Drivaliaris
    Nikos Yannakakis
    Boundary Value Problems, 2007
  • [6] A generalization of the Lax equation
    Przybylska, M
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (3-4) : 217 - 252
  • [7] On generalized Lax equation of the Lax triple of KP Hierarchy
    Xiao-Li Wang
    Lu Yu
    Yan-Xin Yang
    Min-Ru Chen
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 194 - 203
  • [8] On generalized Lax equation of the Lax triple of mKP hierarchy
    Li, Chong
    Shi, Lin-Jie
    Wang, Xiao-Li
    Wang, Na
    Chen, Min-Ru
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (20):
  • [9] On generalized Lax equation of the Lax triple of KP Hierarchy
    Wang, Xiao-Li
    Yu, Lu
    Yang, Yan-Xin
    Chen, Min-Ru
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (02) : 194 - 203
  • [10] The (2+1)-dimensional Schwarzian Korteweg-de Vries equation and its generalizations with discrete Lax matrices
    Liu, Weifang
    Cao, Cewen
    Yang, Xiao
    Xu, Xiaoxue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14321 - 14340