The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
|
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条