The Lax solution to a Hamilton-Jacobi equation and its generalizations: Part 2

被引:2
|
作者
Mykytiuk, YV
Plykarpatsky, AK
Blackmore, D [1 ]
机构
[1] New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
[2] Lvov Ivan Franko State Univ, Dept Mech & Math, UA-29000 Lvov, Ukraine
[3] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[4] NAS, IAPMM, Dept Nonlinear Math Anal, UA-290601 Lvov, Ukraine
关键词
Lax formula; viscosity solution; Hamilton-Jacobi equation; semicontinuity; Lebesgue measure; F-sigma set;
D O I
10.1016/j.na.2003.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t > 0 to the Hamilton-Jacobi, Cauchy problem u(1) + (1)/(2) parallel todelu parallel to(2) = 0, u(x, 0(+)) = v(x), where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton-Jacobi equation u(1) + (1)/(2) (parallel todeluparallel to(2) - betauparallel touparallel to(2) + <Jx, x>) = 0, where J is a diagonal, positive-definite matrix. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [41] Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part I: Theory
    Claudel, Christian G.
    Bayen, Alexandre M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (05) : 1142 - 1157
  • [42] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [43] FORMATION OF SINGULARITIES FOR HAMILTON-JACOBI EQUATION .2.
    TSUJI, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1986, 26 (02): : 299 - 308
  • [44] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [45] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [46] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [47] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [48] Turnpike theorem and the Hamilton-Jacobi equation
    Rapaport, A
    Cartigny, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) : 1091 - 1094
  • [49] PRACTICAL USE OF THE HAMILTON-JACOBI EQUATION
    CHODOS, A
    SOMMERFIELD, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 271 - 275
  • [50] HAMILTON-JACOBI EQUATION FOR DESCRIPTOR SYSTEMS
    XU, H
    MIZUKAMI, K
    SYSTEMS & CONTROL LETTERS, 1993, 21 (04) : 321 - 327