Lunar Production System for Extracting Oxygen from Regolith

被引:10
|
作者
Linne, Diane L. [1 ]
Schuler, Jason M. [2 ]
Sibille, Laurent [3 ]
Kleinhenz, Julie E. [1 ]
Colozza, Anthony J. [1 ]
Fincannon, Homer J. [1 ]
Oleson, Steven R. [1 ]
Suzuki, Nantel H. [4 ]
Moore, Landon [5 ]
机构
[1] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA
[2] NASA, Kennedy Space Ctr, FL 32899 USA
[3] Southeastern Univ Res Assoc, Kennedy Space Ctr, FL 32899 USA
[4] NASA Headquarters, 21000 Brookpk Rd, Cleveland, OH 44135 USA
[5] NASA, Johnson Space Ctr, Houston, TX 77058 USA
关键词
D O I
10.1061/(ASCE)AS.1943-5525.0001269
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A study was conducted to determine the mass and power of an in situ propellant production plant producing 10.5 t of liquid oxygen per year from the regolith at the lunar south pole. The carbothennal reduction process was selected for oxygen extraction from the regolith, using direct solar energy from a concentrator for the thermal heating in the carbothermal reactor, and solar arrays for the remaining electrical power needs. The baseline lander design selected for delivery of the production plant is capable of landing a payload mass of 3,600 kg and has significant cargo area available below the propulsion deck close to the ground for the in situ resource utilization (ISRU) hardware. Total mass for the 10.5-t oxygen plant, including all power systems, structure, command and control, communication, thermal management, and 30% margin, was 4,145 kg, exceeding the lander's payload capability. A second design of a smaller plant producing 7 t of oxygen per year resulted in a mass of 3,459 kg, which is within the lander's capability. Mass payback ratio for the 10.5- and 7-t oxygen plants is 0.4 and 0.5 (kg hardware)/(kg oxygen/yr), respectively, and indicates that a net gain of mass on the lunar surface can be realized in three to four months. (C) 2021 Published by American Society of Civil Engineers.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] The loss of helium by lunar regolith
    G. S. Anufriev
    E. M. Galimov
    Doklady Earth Sciences, 2008, 421 : 804 - 806
  • [42] REDUCED TITANIUM IN LUNAR REGOLITH
    DIKOV, IP
    NEMOSHKALENKO, VV
    ALESHIN, VG
    IVANOV, AV
    BOGATIKOV, OA
    DOKLADY AKADEMII NAUK SSSR, 1977, 234 (01): : 176 - 179
  • [43] Noble Gases in the Lunar Regolith
    邹永廖
    徐琳
    欧阳自远
    Chinese Journal of Geochemistry, 2003, (04) : 361 - 368
  • [44] EXTENT OF LUNAR REGOLITH MIXING
    NISHIZUMI, K
    IMAMURA, M
    KOHL, CP
    MURRELL, MT
    ARNOLD, JR
    RUSS, GP
    EARTH AND PLANETARY SCIENCE LETTERS, 1979, 44 (03) : 409 - 419
  • [45] Water Formation in the Lunar Regolith
    Dubinskii, A. Yu.
    Popel, S. I.
    COSMIC RESEARCH, 2019, 57 (02) : 79 - 84
  • [46] Sintering of Lunar regolith: A review
    Hossain, Sk S.
    Bullard, Jeffrey W.
    ACTA ASTRONAUTICA, 2025, 231 : 153 - 174
  • [47] AN INTERSTELLAR COMPONENT IN THE LUNAR REGOLITH
    BRILLIANT, DR
    FRANCHI, IA
    ARDEN, JW
    PILLINGER, CT
    METEORITICS, 1992, 27 (03): : 206 - 207
  • [48] REGOLITH MIXING OF LUNAR METEORITES
    Welten, K. C.
    Nishiizumi, K.
    Owens, T. L.
    DePaolo, D. J.
    METEORITICS & PLANETARY SCIENCE, 2013, 48 : A369 - A369
  • [49] The loss of helium by lunar regolith
    Anufriev, G. S.
    Galimov, E. M.
    DOKLADY EARTH SCIENCES, 2008, 421 (01) : 804 - 806
  • [50] The porosity of the upper lunar regolith
    Hapke, Bruce
    Sato, Hiroyuki
    ICARUS, 2016, 273 : 75 - 83