Lunar Production System for Extracting Oxygen from Regolith

被引:10
|
作者
Linne, Diane L. [1 ]
Schuler, Jason M. [2 ]
Sibille, Laurent [3 ]
Kleinhenz, Julie E. [1 ]
Colozza, Anthony J. [1 ]
Fincannon, Homer J. [1 ]
Oleson, Steven R. [1 ]
Suzuki, Nantel H. [4 ]
Moore, Landon [5 ]
机构
[1] NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA
[2] NASA, Kennedy Space Ctr, FL 32899 USA
[3] Southeastern Univ Res Assoc, Kennedy Space Ctr, FL 32899 USA
[4] NASA Headquarters, 21000 Brookpk Rd, Cleveland, OH 44135 USA
[5] NASA, Johnson Space Ctr, Houston, TX 77058 USA
关键词
D O I
10.1061/(ASCE)AS.1943-5525.0001269
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A study was conducted to determine the mass and power of an in situ propellant production plant producing 10.5 t of liquid oxygen per year from the regolith at the lunar south pole. The carbothennal reduction process was selected for oxygen extraction from the regolith, using direct solar energy from a concentrator for the thermal heating in the carbothermal reactor, and solar arrays for the remaining electrical power needs. The baseline lander design selected for delivery of the production plant is capable of landing a payload mass of 3,600 kg and has significant cargo area available below the propulsion deck close to the ground for the in situ resource utilization (ISRU) hardware. Total mass for the 10.5-t oxygen plant, including all power systems, structure, command and control, communication, thermal management, and 30% margin, was 4,145 kg, exceeding the lander's payload capability. A second design of a smaller plant producing 7 t of oxygen per year resulted in a mass of 3,459 kg, which is within the lander's capability. Mass payback ratio for the 10.5- and 7-t oxygen plants is 0.4 and 0.5 (kg hardware)/(kg oxygen/yr), respectively, and indicates that a net gain of mass on the lunar surface can be realized in three to four months. (C) 2021 Published by American Society of Civil Engineers.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Oxygen extraction from lunar dry regolith: Thermodynamic numerical characterization of the carbothermal reduction
    Troisi, Ivan
    Lunghi, Paolo
    Lavagna, Michele
    ACTA ASTRONAUTICA, 2022, 199 : 113 - 124
  • [22] OXYGEN LIQUEFACTION AND STORAGE-SYSTEM FOR A LUNAR OXYGEN PRODUCTION PLANT
    JENSON, EB
    LINSLEY, JN
    SPACE MANUFACTURING 7: SPACE RESOURCES TO IMPROVE LIFE ON EARTH, 1989, : 78 - 85
  • [23] Contaminants in the Lunar Regolith
    A. V. Mokhov
    T. A. Gornostaeva
    A. P. Rybchuk
    P. M. Kartashov
    Solar System Research, 2023, 57 : 35 - 44
  • [24] EVOLUTION OF LUNAR REGOLITH
    LANGEVIN, Y
    ARNOLD, JR
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1977, 5 : 449 - 489
  • [25] Contaminants in the Lunar Regolith
    Mokhov, A. V.
    Gornostaeva, T. A.
    Rybchuk, A. P.
    Kartashov, P. M.
    SOLAR SYSTEM RESEARCH, 2023, 57 (01) : 35 - 44
  • [26] Parameter Estimation of Lunar Regolith from Lunar Penetrating Radar Data
    Zhang, Ling
    Zeng, Zhaofa
    Li, Jing
    Huang, Ling
    Huo, Zhijun
    Wang, Kun
    Zhang, Jianmin
    SENSORS, 2018, 18 (09)
  • [27] Lunar Prospector measurements of secondary electron emission from lunar regolith
    Halekas, J. S.
    Delory, G. T.
    Lin, R. P.
    Stubbs, T. J.
    Farrell, W. M.
    PLANETARY AND SPACE SCIENCE, 2009, 57 (01) : 78 - 82
  • [28] Selection, Production, and Properties of Regolith Polymer Composites for Lunar Construction
    Gelino, Nathan J.
    Smith, Jackson L.
    Irwin, Tesia D.
    Lipscomb, Thomas A.
    Bell, Evan A.
    Malott, David I.
    Pfund, Stephen J.
    Herrera, Leonel H.
    Gomes, Caela G.
    Gibson, Tracy L.
    Hwang, Julian Z.
    McLeod, Connor J.
    Sibille, Laurent
    Gudino, Marco A.
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [29] ASTEROIDS AND LUNAR REGOLITH
    MENDELL, WW
    GEOTIMES, 1983, 28 (06): : 30 - 31
  • [30] Lunar resource utilization the production of lunar oxygen
    Rosenberg, SD
    SPACE 98, 1998, : 622 - 644