A synthetic Frobenius theorem

被引:0
|
作者
Faran, JJ [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14214 USA
关键词
D O I
10.1016/S0022-4049(97)00034-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A synthetic approach to Frobenius' theorem concerning integrable distributions is discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 32
页数:22
相关论文
共 50 条
  • [31] A combinatorial proof of Frobenius theorem
    Moussu, Robert
    Rolin, Jean-Philippe
    [J]. ASTERISQUE, 2009, (323) : 253 - 260
  • [32] A Counting Proof of a Theorem of Frobenius
    Speyer, David E.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (04): : 357 - 359
  • [33] APPLICATION OF SINGULAR FROBENIUS THEOREM - SINGULAR DARBOUX THEOREM
    CERVEAU, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (22): : 1021 - 1024
  • [34] A Frobenius-Nirenberg theorem with parameter
    Gong, Xianghong
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 101 - 159
  • [35] A Formal Frobenius Theorem and Argument Shift
    Bolsinov, A. V.
    Zuev, K. M.
    [J]. MATHEMATICAL NOTES, 2009, 86 (1-2) : 10 - 18
  • [36] Frobenius theorem for foliations on singular varieties
    Cerveau, D.
    Lins Neto, A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (03): : 447 - 469
  • [37] Frobenius theorem for foliations on singular varieties
    D. Cerveau
    A. Lins Neto
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2008, 39 : 447 - 469
  • [38] COROLLARY TO PERRON-FROBENIUS THEOREM
    ODIARD, C
    [J]. REVUE FRANCAISE D INFORMATIQUE DE RECHERCHE OPERATIONNELLE, 1971, 5 (NR2): : 124 - +
  • [39] ON A GENERALIZATION OF PERRON-FROBENIUS THEOREM
    AKO, K
    [J]. JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1966, 13 : 162 - &
  • [40] ON AN INVERSE PROBLEM TO FROBENIUS' THEOREM II
    Meng, Wei
    Shi, Jiangtao
    Chen, Kelin
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (05)