A synthetic Frobenius theorem

被引:0
|
作者
Faran, JJ [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14214 USA
关键词
D O I
10.1016/S0022-4049(97)00034-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A synthetic approach to Frobenius' theorem concerning integrable distributions is discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 32
页数:22
相关论文
共 50 条
  • [21] FROBENIUS THEOREM FOR AN INTEGRABLE FOLD
    GUELORGET, S
    MOUSSU, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (09): : 455 - 458
  • [22] ON FROBENIUS-RABINOVITSCH THEOREM
    LOUBOUTIN, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (10): : 711 - 714
  • [23] FROBENIUS - MAUTNER RECIPROCITY THEOREM
    WAWRZYNCZYK, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (07): : 555 - +
  • [24] On a theorem by Mr. Frobenius
    De Seguier
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1902, 135 : 528 - 532
  • [25] On an inverse problem to Frobenius' theorem
    Meng, Wei
    Shi, Jiangtao
    ARCHIV DER MATHEMATIK, 2011, 96 (02) : 109 - 114
  • [26] A GENERALISATION OF THE FROBENIUS RECIPROCITY THEOREM
    Dharmadasa, H. Kumudini
    Moran, William
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (02) : 317 - 322
  • [27] A SHORT PROOF OF THE FROBENIUS THEOREM
    LUNDELL, AT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (04) : 1131 - 1133
  • [28] A Frobenius Theorem on Convenient Manifolds
    Josef Teichmann
    Monatshefte für Mathematik, 2001, 134 : 159 - 167
  • [29] A combinatorial proof of Frobenius theorem
    Moussu, Robert
    Rolin, Jean-Philippe
    ASTERISQUE, 2009, (323) : 253 - 260
  • [30] On an inverse problem to Frobenius’ theorem
    Wei Meng
    Jiangtao Shi
    Archiv der Mathematik, 2011, 96 : 109 - 114