Conductance Statistics from a Large Array of Sub-10 nm Molecular Junctions

被引:41
|
作者
Smaali, Kacem [1 ]
Clement, Nicolas [1 ]
Patriarche, Gilles [2 ]
Vuillaume, Dominique [1 ]
机构
[1] IEMN CNRS, F-59652 Villeneuve Dascq, France
[2] CNRS, LPN, F-91460 Marcoussis, France
关键词
molecular electronics; nanodots; nanoelectronics; CHARGE-TRANSPORT; METAL; ALKANEDITHIOLS; SPECTROSCOPY; RESISTANCE; MONOLAYERS; GOLD;
D O I
10.1021/nn301850g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Devices made of few molecules constitute the miniaturization limit that both inorganic and organic-based electronics aspire to reach. However, integration of millions of molecular junctions with less than 100 molecules each has been a long technological challenge requiring well controlled nanometric electrodes. Here we report molecular junctions fabricated on a large array of sub-10 nm single crystal Au nanodots electrodes, a new approach that allows us to measure the conductance of up to a million of junctions in a single conducting atomic force microscope (C-AFM) image. We observe two peaks of conductance for alkylthilol molecules. Tunneling decay constant (beta) for alkanethiols, is in the same range as previous studies. Energy position of molecular orbitals, obtained by transient voltage spectroscopy, varies from peak to peak, in correlation with conductance values.
引用
收藏
页码:4639 / 4647
页数:9
相关论文
共 50 条
  • [21] Sub-10 nm fabrication: methods and applications
    Chen, Yiqin
    Shu, Zhiwen
    Zhang, Shi
    Zeng, Pei
    Liang, Huikang
    Zheng, Mengjie
    Duan, Huigao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2021, 3 (03)
  • [22] Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance
    Tian, Yu
    Wang, Hailong
    Geng, Yijia
    Cong, Lili
    Liu, Yu
    Xu, Weiqing
    Xu, Shuping
    PHOTONICS RESEARCH, 2020, 8 (12) : 1850 - 1856
  • [23] Capillary filling of sub-10 nm nanochannels
    Haneveld, Jeroen
    Tas, Niels R.
    Brunets, Nataliya
    Jansen, Henri V.
    Elwenspoek, Miko
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [24] Growth of sub-10 nm fluorescent nanodiamonds
    Alzahrani, Yahya A.
    Alkahtani, Masfer H.
    OPTICAL MATERIALS EXPRESS, 2023, 13 (08) : 2192 - 2202
  • [25] Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
    Karan, Santanu
    Jiang, Zhiwei
    Livingston, Andrew G.
    SCIENCE, 2015, 348 (6241) : 1347 - 1351
  • [26] Memory and aging effects in interacting sub-10 nm nanomagnets with large uniaxial anisotropy
    Zhang, Kai-Cheng
    Liu, Bang-Gui
    PHYSICS LETTERS A, 2009, 373 (31) : 2760 - 2763
  • [27] Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors
    Siegfried, T.
    Ekinci, Y.
    Solak, H. H.
    Martin, O. J. F.
    Sigg, H.
    APPLIED PHYSICS LETTERS, 2011, 99 (26)
  • [28] Sub-10 nm-scale capacitors and tunnel junctions measurements by SMM coupled to RF interferometry
    Wang, F.
    Dargent, T.
    Ducatteau, D.
    Dambrine, G.
    Haddadi, K.
    Clement, N.
    Theron, D.
    Legrand, B.
    2015 45TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2015, : 658 - 661
  • [29] Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution
    Fringes, Stefan
    Schwemmer, C.
    Rawlings, Colin D.
    Knoll, Armin W.
    NANO LETTERS, 2019, 19 (12) : 8855 - 8861
  • [30] Laser Ablation of Sub-10 nm Silver Nanoparticles
    Zinovev, Alexander
    Moore, Jerome F.
    Baryshev, Sergey V.
    Schultz, J. Albert
    Lewis, Ernest
    Brinson, Bruce
    McCully, Michael
    Pellin, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17): : 9552 - 9559