Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance

被引:5
|
作者
Tian, Yu [1 ]
Wang, Hailong [1 ]
Geng, Yijia [2 ]
Cong, Lili [1 ]
Liu, Yu [2 ]
Xu, Weiqing [1 ]
Xu, Shuping [1 ]
机构
[1] Jilin Univ, Coll Chem, Inst Theoret Chem, State Key Lab Supramol Struct & Mat, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/PRJ.404092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gap-type metallic nanostructures are widely used in catalytic reactions, sensors, and photonics because the hotspot effect on these nanostructures supports giant local electromagnetic field enhancement. To achieve hotspots, researchers devote themselves to reducing gap distances, even to 1 nm. However, current techniques to fabricate such narrow gaps in large areas are still challenging. Herein, a new coupling way to boost the sub-10 nm plasmonic nanogap array is developed, based on the plasmon-triggered optical waveguide resonance via near-field coupling. This effect leads to an amplified local electromagnetic field within the gap regions equivalent to narrower gaps, which is evidenced experimentally by the surface-enhanced Raman scattering intensity of probed molecules located in the gap and the finite-difference time-domain numerical simulation results. This study provides a universal strategy to promote the performance of the existing hotspot configurations without changing their geometries. (C) 2020 Chinese Laser Press
引用
收藏
页码:1850 / 1856
页数:7
相关论文
共 50 条
  • [1] Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance
    YU TIAN
    HAILONG WANG
    YIJIA GENG
    LILI CONG
    YU LIU
    WEIQING XU
    SHUPING XU
    Photonics Research, 2020, 8 (12) : 1850 - 1856
  • [2] A progressive wafer scale approach for Sub-10 nm nanogap structures
    Cha, Jongjin
    Lee, Geon
    Lee, Dukhyung
    Kim, Dai-Sik
    Kim, Sunghwan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [3] Sub-10 nm nanogap fabrication on suspended glassy carbon nanofibers
    Arnoldo Salazar
    Samira Hosseini
    Margarita Sanchez-Domínguez
    Marc. J. Madou
    Alejandro Montesinos-Castellanos
    Sergio O. Martinez-Chapa
    Microsystems & Nanoengineering, 6
  • [4] Sub-10 nm nanogap fabrication on suspended glassy carbon nanofibers
    Salazar, Arnoldo
    Hosseini, Samira
    Sanchez-Dominguez, Margarita
    Madou, Marc J.
    Montesinos-Castellanos, Alejandro
    Martinez-Chapa, Sergio O.
    MICROSYSTEMS & NANOENGINEERING, 2020, 6 (01)
  • [5] Integrated "Hot Spots": Tunable Sub-10 nm Crescent Nanogap Arrays
    Zhang, Wei
    Gu, Panpan
    Wang, Zengyao
    Ai, Bin
    Zhou, Ziwei
    Zhao, Zhiyuan
    Li, Chunguang
    Shi, Zhan
    Zhang, Gang
    ADVANCED OPTICAL MATERIALS, 2019, 7 (24)
  • [6] Straightforward fabrication of sub-10 nm nanogap electrode pairs by electron beam lithography
    McMullen, Reema
    Mishra, Aditya
    Slinker, Jason D.
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 77 : 275 - 280
  • [7] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [8] Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes
    Barik, Avijit
    Chen, Xiaoshu
    Oh, Sang-Hyun
    NANO LETTERS, 2016, 16 (10) : 6317 - 6324
  • [9] Computational Sub-10 nm Plasmonic Nanogap Patterns by Block Copolymer Self-Assembly
    Kim, Sang-Kon
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (07) : 1063 - 1066
  • [10] Periodic Folded Gold Nanostructures with a Sub-10 nm Nanogap for Surface-Enhanced Raman Spectroscopy
    Ye, Yuting
    Wang, Jiqiang
    Fang, Zhuo
    Yan, Yongda
    Geng, Yanquan
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (08) : 10450 - 10458