Rotating solutions of the parametrically excited pendulum

被引:46
|
作者
Garira, W [1 ]
Bishop, SR [1 ]
机构
[1] UCL, Ctr Nonlinear Dynam & Applicat, London WC1E 6BT, England
关键词
D O I
10.1016/S0022-460X(02)01435-9
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [41] UNSTABLE PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM
    VANDEWATER, W
    HOPPENBROUWERS, M
    CHRISTIANSEN, F
    [J]. PHYSICAL REVIEW A, 1991, 44 (10): : 6388 - 6398
  • [42] Complicated regular and chaotic motions of the parametrically excited pendulum
    Butikov, Eugene I.
    [J]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 743 - 764
  • [43] PARAMETRICALLY DRIVEN PENDULUM AND EXACT-SOLUTIONS
    STEEB, WH
    EULER, N
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (08) : 1527 - 1530
  • [44] Stability and control of a parametrically excited rotating beam
    Sinha, SC
    Marghitu, DB
    Boghiu, D
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1998, 120 (04): : 462 - 470
  • [45] Stability of the parametrically excited damped inverted pendulum: Theory and experiment
    Carbo, Randy M.
    Smith, Robert W. M.
    Poese, Matthew E.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (04): : 1623 - 1631
  • [46] STUDY ON STABILITY OF PARAMETRICALLY EXCITED PENDULUM AS SPECIAL RHEONONLINEAR VIBRATOR
    GRADEWALD, R
    MOLDENHA.W
    [J]. ANNALEN DER PHYSIK, 1971, 27 (04) : 359 - +
  • [47] Transition curves in a parametrically excited pendulum with a force of elliptic type
    Sah, Si Mohamed
    Mann, Brian
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2148): : 3995 - 4007
  • [48] Symbolic computation of secondary bifurcations in a parametrically excited simple pendulum
    Butcher, EA
    Sinha, SC
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (03): : 627 - 637
  • [49] Symmetry-breaking in the response of the parametrically excited pendulum model
    Bishop, SR
    Sofroniou, A
    Shi, P
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (02) : 257 - 264
  • [50] Analysis of hammer movement based on a parametrically excited pendulum model
    Ohta, Ken
    Umegaki, Koji
    Murofushi, Koji
    Luo, Zhi Wei
    [J]. ENGINEERING OF SPORT 8: ENGINEERING EMOTION - 8TH CONFERENCE OF THE INTERNATIONAL SPORTS ENGINEERING ASSOCIATION (ISEA), 2010, 2 (02): : 3197 - 3203